Loading…
Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles
We created AA2024–AA1050 and AA2024–AA1050/0.005 vol.% Al 2 O 3 nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among...
Saved in:
Published in: | Discover nano 2024-01, Vol.19 (1), p.1-1, Article 1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3 |
container_end_page | 1 |
container_issue | 1 |
container_start_page | 1 |
container_title | Discover nano |
container_volume | 19 |
creator | Roghani, Hamed Borhani, Ehsan Ahmadi, Ehsan Jafarian, Hamid Reza |
description | We created AA2024–AA1050 and AA2024–AA1050/0.005 vol.% Al
2
O
3
nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024–AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024–AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024–AA1050/Al
2
O
3
nanocomposites. |
doi_str_mv | 10.1186/s11671-023-03917-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a69eb25a262b4d01af21c86b7ba87891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a69eb25a262b4d01af21c86b7ba87891</doaj_id><sourcerecordid>2909087710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAlhASi6bYThwnKzSquFSqxAJYW8eXzHiU2IPtTNUd78D7seBJcJpSOixY5eLvfP9J9BfFc4LPCWmbN5GQhpMS06rEVUd4SR8Vx5RXpOwo7R4_uD8qTmPcYoxpy2nL2NPiqGpJw2qGj4ufn9Okb5DvkdqAW5uIrENpYxCsrVujXfDKxHiGRquCjylMKk3BnCFwGo1mnrEKhpnbmZBsns-q1YpiWv_6_mO1Iphh5MB55cedjzZlQgUDyWgkb5YkpaZxGiDZvUHBDwOS3umD9GubNgurtU3WuzkFn2PM0N4P56_mRxim0Tq4DdtB3kUNJj4rnvQwRHN6dz0pvr5_9-XiY3n16cPlxeqqVKwmqTSYs7oxULVGy5q0sqk1B9piIhXjWBIMXQ-AdS25NlwC77DRilUS-obXujopLhev9rAVu2BHCDfCgxW3L3xYi7uVBDSdkZQBbaisNSbQU6LaRmZry9uOZNfbxbWb5JhTjEsBhgPp4YmzG7H2e0Ewb0hTsWx4fWcI_ttkYhKjjcoMAzjjpyhohzvcck5wRl_-g279FFz-VwtVN5zNK9GFmksQg-nvtyFYzHUUSx1FrqO4raOgeejFw--4H_lTvgxUCxDzUe5e-Jv9H-1vqcHu5w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909046751</pqid></control><display><type>article</type><title>Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>PubMed Central</source><creator>Roghani, Hamed ; Borhani, Ehsan ; Ahmadi, Ehsan ; Jafarian, Hamid Reza</creator><creatorcontrib>Roghani, Hamed ; Borhani, Ehsan ; Ahmadi, Ehsan ; Jafarian, Hamid Reza</creatorcontrib><description>We created AA2024–AA1050 and AA2024–AA1050/0.005 vol.% Al
2
O
3
nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024–AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024–AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024–AA1050/Al
2
O
3
nanocomposites.</description><identifier>ISSN: 2731-9229</identifier><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 2731-9229</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-023-03917-2</identifier><identifier>PMID: 38165450</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accumulative roll bonding (ARB) ; Aging ; Aging process ; Alumina ; Aluminum ; Aluminum base alloys ; Aluminum oxide ; Chemistry and Materials Science ; Elongation ; Materials Science ; Mechanical properties ; Microhardness ; Molecular Medicine ; Nanochemistry ; Nanocomposites ; Nanoparticles ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Roll bonding ; Tensile strength ; Tensile tests ; Wear resistance</subject><ispartof>Discover nano, 2024-01, Vol.19 (1), p.1-1, Article 1</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3</citedby><cites>FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2909046751/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2909046751?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38165450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roghani, Hamed</creatorcontrib><creatorcontrib>Borhani, Ehsan</creatorcontrib><creatorcontrib>Ahmadi, Ehsan</creatorcontrib><creatorcontrib>Jafarian, Hamid Reza</creatorcontrib><title>Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles</title><title>Discover nano</title><addtitle>Discover Nano</addtitle><addtitle>Discov Nano</addtitle><description>We created AA2024–AA1050 and AA2024–AA1050/0.005 vol.% Al
2
O
3
nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024–AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024–AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024–AA1050/Al
2
O
3
nanocomposites.</description><subject>Accumulative roll bonding (ARB)</subject><subject>Aging</subject><subject>Aging process</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Aluminum oxide</subject><subject>Chemistry and Materials Science</subject><subject>Elongation</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Molecular Medicine</subject><subject>Nanochemistry</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Roll bonding</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Wear resistance</subject><issn>2731-9229</issn><issn>1931-7573</issn><issn>2731-9229</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAlhASi6bYThwnKzSquFSqxAJYW8eXzHiU2IPtTNUd78D7seBJcJpSOixY5eLvfP9J9BfFc4LPCWmbN5GQhpMS06rEVUd4SR8Vx5RXpOwo7R4_uD8qTmPcYoxpy2nL2NPiqGpJw2qGj4ufn9Okb5DvkdqAW5uIrENpYxCsrVujXfDKxHiGRquCjylMKk3BnCFwGo1mnrEKhpnbmZBsns-q1YpiWv_6_mO1Iphh5MB55cedjzZlQgUDyWgkb5YkpaZxGiDZvUHBDwOS3umD9GubNgurtU3WuzkFn2PM0N4P56_mRxim0Tq4DdtB3kUNJj4rnvQwRHN6dz0pvr5_9-XiY3n16cPlxeqqVKwmqTSYs7oxULVGy5q0sqk1B9piIhXjWBIMXQ-AdS25NlwC77DRilUS-obXujopLhev9rAVu2BHCDfCgxW3L3xYi7uVBDSdkZQBbaisNSbQU6LaRmZry9uOZNfbxbWb5JhTjEsBhgPp4YmzG7H2e0Ewb0hTsWx4fWcI_ttkYhKjjcoMAzjjpyhohzvcck5wRl_-g279FFz-VwtVN5zNK9GFmksQg-nvtyFYzHUUSx1FrqO4raOgeejFw--4H_lTvgxUCxDzUe5e-Jv9H-1vqcHu5w</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Roghani, Hamed</creator><creator>Borhani, Ehsan</creator><creator>Ahmadi, Ehsan</creator><creator>Jafarian, Hamid Reza</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240102</creationdate><title>Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles</title><author>Roghani, Hamed ; Borhani, Ehsan ; Ahmadi, Ehsan ; Jafarian, Hamid Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulative roll bonding (ARB)</topic><topic>Aging</topic><topic>Aging process</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Aluminum oxide</topic><topic>Chemistry and Materials Science</topic><topic>Elongation</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Molecular Medicine</topic><topic>Nanochemistry</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Roll bonding</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roghani, Hamed</creatorcontrib><creatorcontrib>Borhani, Ehsan</creatorcontrib><creatorcontrib>Ahmadi, Ehsan</creatorcontrib><creatorcontrib>Jafarian, Hamid Reza</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discover nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roghani, Hamed</au><au>Borhani, Ehsan</au><au>Ahmadi, Ehsan</au><au>Jafarian, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles</atitle><jtitle>Discover nano</jtitle><stitle>Discover Nano</stitle><addtitle>Discov Nano</addtitle><date>2024-01-02</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><artnum>1</artnum><issn>2731-9229</issn><issn>1931-7573</issn><eissn>2731-9229</eissn><eissn>1556-276X</eissn><abstract>We created AA2024–AA1050 and AA2024–AA1050/0.005 vol.% Al
2
O
3
nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024–AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024–AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024–AA1050/Al
2
O
3
nanocomposites.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38165450</pmid><doi>10.1186/s11671-023-03917-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2731-9229 |
ispartof | Discover nano, 2024-01, Vol.19 (1), p.1-1, Article 1 |
issn | 2731-9229 1931-7573 2731-9229 1556-276X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a69eb25a262b4d01af21c86b7ba87891 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access ; PubMed Central |
subjects | Accumulative roll bonding (ARB) Aging Aging process Alumina Aluminum Aluminum base alloys Aluminum oxide Chemistry and Materials Science Elongation Materials Science Mechanical properties Microhardness Molecular Medicine Nanochemistry Nanocomposites Nanoparticles Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Roll bonding Tensile strength Tensile tests Wear resistance |
title | Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20changes%20in%20the%20aging%20process,%20microstructure,%20and%20mechanical%20properties%20of%20AA2024%E2%80%93AA1050%20nanocomposites%20created%20by%20the%20accumulative%20roll%20bonding%20process,%20with%20the%20addition%20of%200.005%20vol.%25%20of%20alumina%20nanoparticles&rft.jtitle=Discover%20nano&rft.au=Roghani,%20Hamed&rft.date=2024-01-02&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.artnum=1&rft.issn=2731-9229&rft.eissn=2731-9229&rft_id=info:doi/10.1186/s11671-023-03917-2&rft_dat=%3Cproquest_doaj_%3E2909087710%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2909046751&rft_id=info:pmid/38165450&rfr_iscdi=true |