Loading…

Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles

We created AA2024–AA1050 and AA2024–AA1050/0.005 vol.% Al 2 O 3 nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among...

Full description

Saved in:
Bibliographic Details
Published in:Discover nano 2024-01, Vol.19 (1), p.1-1, Article 1
Main Authors: Roghani, Hamed, Borhani, Ehsan, Ahmadi, Ehsan, Jafarian, Hamid Reza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3
cites cdi_FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3
container_end_page 1
container_issue 1
container_start_page 1
container_title Discover nano
container_volume 19
creator Roghani, Hamed
Borhani, Ehsan
Ahmadi, Ehsan
Jafarian, Hamid Reza
description We created AA2024–AA1050 and AA2024–AA1050/0.005 vol.% Al 2 O 3 nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024–AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024–AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024–AA1050/Al 2 O 3 nanocomposites.
doi_str_mv 10.1186/s11671-023-03917-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a69eb25a262b4d01af21c86b7ba87891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a69eb25a262b4d01af21c86b7ba87891</doaj_id><sourcerecordid>2909087710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAlhASi6bYThwnKzSquFSqxAJYW8eXzHiU2IPtTNUd78D7seBJcJpSOixY5eLvfP9J9BfFc4LPCWmbN5GQhpMS06rEVUd4SR8Vx5RXpOwo7R4_uD8qTmPcYoxpy2nL2NPiqGpJw2qGj4ufn9Okb5DvkdqAW5uIrENpYxCsrVujXfDKxHiGRquCjylMKk3BnCFwGo1mnrEKhpnbmZBsns-q1YpiWv_6_mO1Iphh5MB55cedjzZlQgUDyWgkb5YkpaZxGiDZvUHBDwOS3umD9GubNgurtU3WuzkFn2PM0N4P56_mRxim0Tq4DdtB3kUNJj4rnvQwRHN6dz0pvr5_9-XiY3n16cPlxeqqVKwmqTSYs7oxULVGy5q0sqk1B9piIhXjWBIMXQ-AdS25NlwC77DRilUS-obXujopLhev9rAVu2BHCDfCgxW3L3xYi7uVBDSdkZQBbaisNSbQU6LaRmZry9uOZNfbxbWb5JhTjEsBhgPp4YmzG7H2e0Ewb0hTsWx4fWcI_ttkYhKjjcoMAzjjpyhohzvcck5wRl_-g279FFz-VwtVN5zNK9GFmksQg-nvtyFYzHUUSx1FrqO4raOgeejFw--4H_lTvgxUCxDzUe5e-Jv9H-1vqcHu5w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909046751</pqid></control><display><type>article</type><title>Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>PubMed Central</source><creator>Roghani, Hamed ; Borhani, Ehsan ; Ahmadi, Ehsan ; Jafarian, Hamid Reza</creator><creatorcontrib>Roghani, Hamed ; Borhani, Ehsan ; Ahmadi, Ehsan ; Jafarian, Hamid Reza</creatorcontrib><description>We created AA2024–AA1050 and AA2024–AA1050/0.005 vol.% Al 2 O 3 nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024–AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024–AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024–AA1050/Al 2 O 3 nanocomposites.</description><identifier>ISSN: 2731-9229</identifier><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 2731-9229</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-023-03917-2</identifier><identifier>PMID: 38165450</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accumulative roll bonding (ARB) ; Aging ; Aging process ; Alumina ; Aluminum ; Aluminum base alloys ; Aluminum oxide ; Chemistry and Materials Science ; Elongation ; Materials Science ; Mechanical properties ; Microhardness ; Molecular Medicine ; Nanochemistry ; Nanocomposites ; Nanoparticles ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Roll bonding ; Tensile strength ; Tensile tests ; Wear resistance</subject><ispartof>Discover nano, 2024-01, Vol.19 (1), p.1-1, Article 1</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3</citedby><cites>FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2909046751/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2909046751?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38165450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roghani, Hamed</creatorcontrib><creatorcontrib>Borhani, Ehsan</creatorcontrib><creatorcontrib>Ahmadi, Ehsan</creatorcontrib><creatorcontrib>Jafarian, Hamid Reza</creatorcontrib><title>Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles</title><title>Discover nano</title><addtitle>Discover Nano</addtitle><addtitle>Discov Nano</addtitle><description>We created AA2024–AA1050 and AA2024–AA1050/0.005 vol.% Al 2 O 3 nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024–AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024–AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024–AA1050/Al 2 O 3 nanocomposites.</description><subject>Accumulative roll bonding (ARB)</subject><subject>Aging</subject><subject>Aging process</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Aluminum oxide</subject><subject>Chemistry and Materials Science</subject><subject>Elongation</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Molecular Medicine</subject><subject>Nanochemistry</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Roll bonding</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Wear resistance</subject><issn>2731-9229</issn><issn>1931-7573</issn><issn>2731-9229</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAlhASi6bYThwnKzSquFSqxAJYW8eXzHiU2IPtTNUd78D7seBJcJpSOixY5eLvfP9J9BfFc4LPCWmbN5GQhpMS06rEVUd4SR8Vx5RXpOwo7R4_uD8qTmPcYoxpy2nL2NPiqGpJw2qGj4ufn9Okb5DvkdqAW5uIrENpYxCsrVujXfDKxHiGRquCjylMKk3BnCFwGo1mnrEKhpnbmZBsns-q1YpiWv_6_mO1Iphh5MB55cedjzZlQgUDyWgkb5YkpaZxGiDZvUHBDwOS3umD9GubNgurtU3WuzkFn2PM0N4P56_mRxim0Tq4DdtB3kUNJj4rnvQwRHN6dz0pvr5_9-XiY3n16cPlxeqqVKwmqTSYs7oxULVGy5q0sqk1B9piIhXjWBIMXQ-AdS25NlwC77DRilUS-obXujopLhev9rAVu2BHCDfCgxW3L3xYi7uVBDSdkZQBbaisNSbQU6LaRmZry9uOZNfbxbWb5JhTjEsBhgPp4YmzG7H2e0Ewb0hTsWx4fWcI_ttkYhKjjcoMAzjjpyhohzvcck5wRl_-g279FFz-VwtVN5zNK9GFmksQg-nvtyFYzHUUSx1FrqO4raOgeejFw--4H_lTvgxUCxDzUe5e-Jv9H-1vqcHu5w</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Roghani, Hamed</creator><creator>Borhani, Ehsan</creator><creator>Ahmadi, Ehsan</creator><creator>Jafarian, Hamid Reza</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240102</creationdate><title>Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles</title><author>Roghani, Hamed ; Borhani, Ehsan ; Ahmadi, Ehsan ; Jafarian, Hamid Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulative roll bonding (ARB)</topic><topic>Aging</topic><topic>Aging process</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Aluminum oxide</topic><topic>Chemistry and Materials Science</topic><topic>Elongation</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Molecular Medicine</topic><topic>Nanochemistry</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Roll bonding</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roghani, Hamed</creatorcontrib><creatorcontrib>Borhani, Ehsan</creatorcontrib><creatorcontrib>Ahmadi, Ehsan</creatorcontrib><creatorcontrib>Jafarian, Hamid Reza</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discover nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roghani, Hamed</au><au>Borhani, Ehsan</au><au>Ahmadi, Ehsan</au><au>Jafarian, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles</atitle><jtitle>Discover nano</jtitle><stitle>Discover Nano</stitle><addtitle>Discov Nano</addtitle><date>2024-01-02</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><artnum>1</artnum><issn>2731-9229</issn><issn>1931-7573</issn><eissn>2731-9229</eissn><eissn>1556-276X</eissn><abstract>We created AA2024–AA1050 and AA2024–AA1050/0.005 vol.% Al 2 O 3 nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024–AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024–AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024–AA1050/Al 2 O 3 nanocomposites.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38165450</pmid><doi>10.1186/s11671-023-03917-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2731-9229
ispartof Discover nano, 2024-01, Vol.19 (1), p.1-1, Article 1
issn 2731-9229
1931-7573
2731-9229
1556-276X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a69eb25a262b4d01af21c86b7ba87891
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access ; PubMed Central
subjects Accumulative roll bonding (ARB)
Aging
Aging process
Alumina
Aluminum
Aluminum base alloys
Aluminum oxide
Chemistry and Materials Science
Elongation
Materials Science
Mechanical properties
Microhardness
Molecular Medicine
Nanochemistry
Nanocomposites
Nanoparticles
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Roll bonding
Tensile strength
Tensile tests
Wear resistance
title Study of changes in the aging process, microstructure, and mechanical properties of AA2024–AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20changes%20in%20the%20aging%20process,%20microstructure,%20and%20mechanical%20properties%20of%20AA2024%E2%80%93AA1050%20nanocomposites%20created%20by%20the%20accumulative%20roll%20bonding%20process,%20with%20the%20addition%20of%200.005%20vol.%25%20of%20alumina%20nanoparticles&rft.jtitle=Discover%20nano&rft.au=Roghani,%20Hamed&rft.date=2024-01-02&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.artnum=1&rft.issn=2731-9229&rft.eissn=2731-9229&rft_id=info:doi/10.1186/s11671-023-03917-2&rft_dat=%3Cproquest_doaj_%3E2909087710%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-e07546ea38edb418b64d7a2801bc570b10a9faa0d4b7de7ba790edc53baf674d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2909046751&rft_id=info:pmid/38165450&rfr_iscdi=true