Loading…

A Hybrid MCDM Model for Improving GIS-Based Solar Farms Site Selection

The purpose of this research is to establish a decision model for improving the performance of solar farms. To investigate the interdependent interrelationship and influential weights among criteria for solar farms site selection, a hybrid MCDM model including decision-making trial and evaluation la...

Full description

Saved in:
Bibliographic Details
Published in:International journal of photoenergy 2014-01, Vol.2014 (2014), p.1-9
Main Authors: Chen, Chao-Rong, Tsuei, Hung-Jia, Huang, Chi-Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c582t-d35b91abf58ac2eed5aff01155eccfc91ac52b74c43994c5b0a77488f08daf513
cites cdi_FETCH-LOGICAL-c582t-d35b91abf58ac2eed5aff01155eccfc91ac52b74c43994c5b0a77488f08daf513
container_end_page 9
container_issue 2014
container_start_page 1
container_title International journal of photoenergy
container_volume 2014
creator Chen, Chao-Rong
Tsuei, Hung-Jia
Huang, Chi-Chen
description The purpose of this research is to establish a decision model for improving the performance of solar farms. To investigate the interdependent interrelationship and influential weights among criteria for solar farms site selection, a hybrid MCDM model including decision-making trial and evaluation laboratory (DEMATEL) and DEMATEL-based analytic network process (DANP) based on geographical information systems (GIS) is utilized. The empirical results display that there are interdependence and self-effect relationships among criteria via DEMATEL technique. According to the influential network relation map (INRM), the dimension that administrators of solar energy industry should improve first when enhancing the performance of solar farms is orography. In the ten criteria, solar radiation is the most important criterion impacting solar farms site selection, followed by average temperature and distance to villages.
doi_str_mv 10.1155/2014/925370
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a6a75ba56bf94e9ba1ea6f510c331b8a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a6a75ba56bf94e9ba1ea6f510c331b8a</doaj_id><sourcerecordid>1629353415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-d35b91abf58ac2eed5aff01155eccfc91ac52b74c43994c5b0a77488f08daf513</originalsourceid><addsrcrecordid>eNqFkc1rFEEQxQdRMMScvEuDF1HG9OdM9zGubrKQxcMq5NZU91THDrPTsXs2kv_eXkdEvHiqourH4z1e07xk9D1jSp1zyuS54Ur09Elzwjrdt4qbm6d1Z4y2XcdvnjdnpURHpewlE7o7adYX5OrR5TiQ7erjlmzTgCMJKZPN_j6nhzjdksvNrv0ABQeySyNksoa8L2QXZyQ7HNHPMU0vmmcBxoJnv-dp83X96cvqqr3-fLlZXVy3Xmk-t4NQzjBwQWnwHHFQEAI9ukfvg68vr7jrpZfCGOmVo9D3UutA9QBBMXHabBbdIcGdvc9xD_nRJoj21yHlWwt5jn5ECx30yoHqXDASjQOG0FUN6oVgTkPVerNo1aDfD1hmu4_F4zjChOlQLOu4EUpIpir6-h_0Lh3yVJPa6l1LwxnnlXq3UD6nUjKGPwYZtceQ9liRXSqq9NuF_hanAX7E_8CvFhgrggH-gsWxSvETY2eXYw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558492122</pqid></control><display><type>article</type><title>A Hybrid MCDM Model for Improving GIS-Based Solar Farms Site Selection</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Chen, Chao-Rong ; Tsuei, Hung-Jia ; Huang, Chi-Chen</creator><contributor>Jwo, Ching-Song</contributor><creatorcontrib>Chen, Chao-Rong ; Tsuei, Hung-Jia ; Huang, Chi-Chen ; Jwo, Ching-Song</creatorcontrib><description>The purpose of this research is to establish a decision model for improving the performance of solar farms. To investigate the interdependent interrelationship and influential weights among criteria for solar farms site selection, a hybrid MCDM model including decision-making trial and evaluation laboratory (DEMATEL) and DEMATEL-based analytic network process (DANP) based on geographical information systems (GIS) is utilized. The empirical results display that there are interdependence and self-effect relationships among criteria via DEMATEL technique. According to the influential network relation map (INRM), the dimension that administrators of solar energy industry should improve first when enhancing the performance of solar farms is orography. In the ten criteria, solar radiation is the most important criterion impacting solar farms site selection, followed by average temperature and distance to villages.</description><identifier>ISSN: 1110-662X</identifier><identifier>EISSN: 1687-529X</identifier><identifier>DOI: 10.1155/2014/925370</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Alternative energy sources ; Climate ; Criteria ; Decision making ; Electricity generation ; Farms ; Geographic information systems ; Methods ; Networks ; Performance enhancement ; Power plants ; Satellite navigation systems ; Site selection ; Solar energy ; Solar farms ; Studies ; Villages</subject><ispartof>International journal of photoenergy, 2014-01, Vol.2014 (2014), p.1-9</ispartof><rights>Copyright © 2014 Chao-Rong Chen et al.</rights><rights>Copyright © 2014 Chao-Rong Chen et al. Chao-Rong Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-d35b91abf58ac2eed5aff01155eccfc91ac52b74c43994c5b0a77488f08daf513</citedby><cites>FETCH-LOGICAL-c582t-d35b91abf58ac2eed5aff01155eccfc91ac52b74c43994c5b0a77488f08daf513</cites><orcidid>0000-0002-2301-753X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1558492122/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1558492122?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,37011,44588,74896</link.rule.ids></links><search><contributor>Jwo, Ching-Song</contributor><creatorcontrib>Chen, Chao-Rong</creatorcontrib><creatorcontrib>Tsuei, Hung-Jia</creatorcontrib><creatorcontrib>Huang, Chi-Chen</creatorcontrib><title>A Hybrid MCDM Model for Improving GIS-Based Solar Farms Site Selection</title><title>International journal of photoenergy</title><description>The purpose of this research is to establish a decision model for improving the performance of solar farms. To investigate the interdependent interrelationship and influential weights among criteria for solar farms site selection, a hybrid MCDM model including decision-making trial and evaluation laboratory (DEMATEL) and DEMATEL-based analytic network process (DANP) based on geographical information systems (GIS) is utilized. The empirical results display that there are interdependence and self-effect relationships among criteria via DEMATEL technique. According to the influential network relation map (INRM), the dimension that administrators of solar energy industry should improve first when enhancing the performance of solar farms is orography. In the ten criteria, solar radiation is the most important criterion impacting solar farms site selection, followed by average temperature and distance to villages.</description><subject>Alternative energy sources</subject><subject>Climate</subject><subject>Criteria</subject><subject>Decision making</subject><subject>Electricity generation</subject><subject>Farms</subject><subject>Geographic information systems</subject><subject>Methods</subject><subject>Networks</subject><subject>Performance enhancement</subject><subject>Power plants</subject><subject>Satellite navigation systems</subject><subject>Site selection</subject><subject>Solar energy</subject><subject>Solar farms</subject><subject>Studies</subject><subject>Villages</subject><issn>1110-662X</issn><issn>1687-529X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1rFEEQxQdRMMScvEuDF1HG9OdM9zGubrKQxcMq5NZU91THDrPTsXs2kv_eXkdEvHiqourH4z1e07xk9D1jSp1zyuS54Ur09Elzwjrdt4qbm6d1Z4y2XcdvnjdnpURHpewlE7o7adYX5OrR5TiQ7erjlmzTgCMJKZPN_j6nhzjdksvNrv0ABQeySyNksoa8L2QXZyQ7HNHPMU0vmmcBxoJnv-dp83X96cvqqr3-fLlZXVy3Xmk-t4NQzjBwQWnwHHFQEAI9ukfvg68vr7jrpZfCGOmVo9D3UutA9QBBMXHabBbdIcGdvc9xD_nRJoj21yHlWwt5jn5ECx30yoHqXDASjQOG0FUN6oVgTkPVerNo1aDfD1hmu4_F4zjChOlQLOu4EUpIpir6-h_0Lh3yVJPa6l1LwxnnlXq3UD6nUjKGPwYZtceQ9liRXSqq9NuF_hanAX7E_8CvFhgrggH-gsWxSvETY2eXYw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Chen, Chao-Rong</creator><creator>Tsuei, Hung-Jia</creator><creator>Huang, Chi-Chen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2301-753X</orcidid></search><sort><creationdate>20140101</creationdate><title>A Hybrid MCDM Model for Improving GIS-Based Solar Farms Site Selection</title><author>Chen, Chao-Rong ; Tsuei, Hung-Jia ; Huang, Chi-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-d35b91abf58ac2eed5aff01155eccfc91ac52b74c43994c5b0a77488f08daf513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative energy sources</topic><topic>Climate</topic><topic>Criteria</topic><topic>Decision making</topic><topic>Electricity generation</topic><topic>Farms</topic><topic>Geographic information systems</topic><topic>Methods</topic><topic>Networks</topic><topic>Performance enhancement</topic><topic>Power plants</topic><topic>Satellite navigation systems</topic><topic>Site selection</topic><topic>Solar energy</topic><topic>Solar farms</topic><topic>Studies</topic><topic>Villages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chao-Rong</creatorcontrib><creatorcontrib>Tsuei, Hung-Jia</creatorcontrib><creatorcontrib>Huang, Chi-Chen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of photoenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chao-Rong</au><au>Tsuei, Hung-Jia</au><au>Huang, Chi-Chen</au><au>Jwo, Ching-Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid MCDM Model for Improving GIS-Based Solar Farms Site Selection</atitle><jtitle>International journal of photoenergy</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1110-662X</issn><eissn>1687-529X</eissn><abstract>The purpose of this research is to establish a decision model for improving the performance of solar farms. To investigate the interdependent interrelationship and influential weights among criteria for solar farms site selection, a hybrid MCDM model including decision-making trial and evaluation laboratory (DEMATEL) and DEMATEL-based analytic network process (DANP) based on geographical information systems (GIS) is utilized. The empirical results display that there are interdependence and self-effect relationships among criteria via DEMATEL technique. According to the influential network relation map (INRM), the dimension that administrators of solar energy industry should improve first when enhancing the performance of solar farms is orography. In the ten criteria, solar radiation is the most important criterion impacting solar farms site selection, followed by average temperature and distance to villages.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2014/925370</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2301-753X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-662X
ispartof International journal of photoenergy, 2014-01, Vol.2014 (2014), p.1-9
issn 1110-662X
1687-529X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a6a75ba56bf94e9ba1ea6f510c331b8a
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Alternative energy sources
Climate
Criteria
Decision making
Electricity generation
Farms
Geographic information systems
Methods
Networks
Performance enhancement
Power plants
Satellite navigation systems
Site selection
Solar energy
Solar farms
Studies
Villages
title A Hybrid MCDM Model for Improving GIS-Based Solar Farms Site Selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20MCDM%20Model%20for%20Improving%20GIS-Based%20Solar%20Farms%20Site%20Selection&rft.jtitle=International%20journal%20of%20photoenergy&rft.au=Chen,%20Chao-Rong&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1110-662X&rft.eissn=1687-529X&rft_id=info:doi/10.1155/2014/925370&rft_dat=%3Cproquest_doaj_%3E1629353415%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c582t-d35b91abf58ac2eed5aff01155eccfc91ac52b74c43994c5b0a77488f08daf513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1558492122&rft_id=info:pmid/&rfr_iscdi=true