Loading…
Fabrication and characterization of new Fe3O4@SiO2@TiO2-CPTS-HBAP (FST-CH) nanoparticles for photocatalytic degradation and adsorption removal of rhodamine B dye in the aquatic environment
In this study, Fe3O4@SiO2@TiO2-CPTS-HBAP (FST-CH) nanoparticle was prepared for the simultaneous adsorption and photocatalytic degradation of aromatic chemical pollutants (Rhodamine B dye) in aqueous solution. FST-CH nanoparticle was characterized using scanning electron microscopy (SEM), Fourier-tr...
Saved in:
Published in: | Heliyon 2024-04, Vol.10 (7), p.e29355-e29355, Article e29355 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, Fe3O4@SiO2@TiO2-CPTS-HBAP (FST-CH) nanoparticle was prepared for the simultaneous adsorption and photocatalytic degradation of aromatic chemical pollutants (Rhodamine B dye) in aqueous solution. FST-CH nanoparticle was characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Energy Dispersive X-Ray (EDX) Fluorescence Spectrometer and X-Ray Diffraction (XRD) spectroscopy. The photocatalytic activity of rhodamine B dye (RhB) was evaluated with a Kerman UV 8/18 vertical roller photoreactor. About 56% of RhB in aqueous medium was adsorbed by FST-CH nanoparticles with only 45 min of stirring in the dark, and about 77.01% was degraded or converted to other structures under the photoreactor for 120 min. The photocatalytic degradation of RhB (apparent rate constant: 0.0026 mg dm−3 min−1) occurred by a pseudo-second order reaction. In addition, the recovery of the prepared magnetic FST-CH nanoparticle by an external magnetic field, exhibiting good magnetic response and reusability, shows that the obtained magnetic FST-CH nanoparticle is stable and maintains high degradation ratio and catalyst recovery even after four cycles. Thus, the prepared FST-CH nanoparticle can be highly recommended for its use in potential applications of water decontamination. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e29355 |