Loading…
Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland)
Surface wave (SW) methods offer promising options for an effective and sustainable development of seismic exploration, but they still remain under-exploited in hard rock sites. We present a successful application of active and passive surface wave tomography for the characterization of the southern...
Saved in:
Published in: | Solid earth (Göttingen) 2022-03, Vol.13 (2), p.417-429 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-5557799b9b0dc6d61f86b0f028bba12de4b2dbae9fdff147a80f92e962b24e793 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-5557799b9b0dc6d61f86b0f028bba12de4b2dbae9fdff147a80f92e962b24e793 |
container_end_page | 429 |
container_issue | 2 |
container_start_page | 417 |
container_title | Solid earth (Göttingen) |
container_volume | 13 |
creator | Colombero, Chiara Papadopoulou, Myrto Kauti, Tuomas Skyttä, Pietari Koivisto, Emilia Savolainen, Mikko Socco, Laura Valentina |
description | Surface wave (SW) methods offer promising options for an effective and sustainable development of seismic exploration, but they still remain under-exploited in hard rock sites. We present a successful application of active and passive surface wave tomography for the characterization of the southern continuation of the Siilinjärvi phosphate deposit (Finland). A semi-automatic workflow for the extraction of the path-average dispersion curves (DCs) from ambient seismic noise data is proposed, including identification of time windows with strong coherent SW signal, azimuth analysis and two-station method for DC picking. DCs retrieved from passive data are compared with active SW tomography results recently obtained at the site. Passive data are found to carry information at longer wavelengths, thus extending the investigation depth. Active and passive DCs are consequently inverted together to retrieve a deep pseudo-3D shear-wave velocity model for the site, with improved resolution. The southern continuation of the mineralization, its contacts with the host rocks and different sets of cross-cutting diabase dikes are well imaged in the final velocity model. The seismic results are compared with the latest available geological models to both validate the proposed workflow and improve the interpretation of the geometry and extent of the mineralization. Important large-scale geological boundaries and structural discontinuities are recognized from the results, demonstrating the effectiveness and advantages of the methods for mineral exploration perspectives. |
doi_str_mv | 10.5194/se-13-417-2022 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a6df337e93af4d08aafacf04788148f3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695350875</galeid><doaj_id>oai_doaj_org_article_a6df337e93af4d08aafacf04788148f3</doaj_id><sourcerecordid>A695350875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5557799b9b0dc6d61f86b0f028bba12de4b2dbae9fdff147a80f92e962b24e793</originalsourceid><addsrcrecordid>eNptUttqFTEUDaJgOfbV54AvFpya21ziWylWDxQKHn0Oe3I5zWFmMiaZ2v6Dn-Gf-GPmnIq10ISwN3uvtXJbCL2m5LSmUrxPtqK8ErStGGHsGTqiXSMrWTP5_L_8JTpOaUfKaFrW1vwI_dws0YG21Q-4sTiHMWwjzNd32IWIRz_ZCAO2t_MQImQfpg8YcFq0tim5ZcA6jL2fDh0cHJ4hJV90YDIYdN6nBjLgtxvvBz_tfv-KNx7P1yGVFZd02OEdvvDTUCgnr9ALB0Oyx3_jCn27-Pj1_HN1efVpfX52WWnRilzVdd22UvayJ0Y3pqGua3riCOv6HigzVvTM9GClM85R0UJHnGRWNqxnwraSr9D6XtcE2Kk5-hHinQrg1aEQ4lZBzF4PVkFjHOetlRycMKQDKK_liGi7joqutFbozb3WHMP3xaasdmGJUzm-Yg0XnBLCyQNqC0XUTy7kCHr0SauzRta8Jl35jhU6fQJVprGj12Gyzpf6I8LJI0LBZHubt7CkpNabL0-K6xhSitb9uzglau8hlayiXBUPqb2H-B_xNbq9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634310030</pqid></control><display><type>article</type><title>Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland)</title><source>Publicly Available Content Database</source><creator>Colombero, Chiara ; Papadopoulou, Myrto ; Kauti, Tuomas ; Skyttä, Pietari ; Koivisto, Emilia ; Savolainen, Mikko ; Socco, Laura Valentina</creator><creatorcontrib>Colombero, Chiara ; Papadopoulou, Myrto ; Kauti, Tuomas ; Skyttä, Pietari ; Koivisto, Emilia ; Savolainen, Mikko ; Socco, Laura Valentina</creatorcontrib><description>Surface wave (SW) methods offer promising options for an effective and sustainable development of seismic exploration, but they still remain under-exploited in hard rock sites. We present a successful application of active and passive surface wave tomography for the characterization of the southern continuation of the Siilinjärvi phosphate deposit (Finland). A semi-automatic workflow for the extraction of the path-average dispersion curves (DCs) from ambient seismic noise data is proposed, including identification of time windows with strong coherent SW signal, azimuth analysis and two-station method for DC picking. DCs retrieved from passive data are compared with active SW tomography results recently obtained at the site. Passive data are found to carry information at longer wavelengths, thus extending the investigation depth. Active and passive DCs are consequently inverted together to retrieve a deep pseudo-3D shear-wave velocity model for the site, with improved resolution. The southern continuation of the mineralization, its contacts with the host rocks and different sets of cross-cutting diabase dikes are well imaged in the final velocity model. The seismic results are compared with the latest available geological models to both validate the proposed workflow and improve the interpretation of the geometry and extent of the mineralization. Important large-scale geological boundaries and structural discontinuities are recognized from the results, demonstrating the effectiveness and advantages of the methods for mineral exploration perspectives.</description><identifier>ISSN: 1869-9529</identifier><identifier>ISSN: 1869-9510</identifier><identifier>EISSN: 1869-9529</identifier><identifier>DOI: 10.5194/se-13-417-2022</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Azimuth ; Comparative analysis ; Cross cutting ; Dikes ; Discovery and exploration ; Dispersion curve analysis ; Earth science ; Embankments ; Geology ; Methods ; Mine surveying ; Mineral exploration ; Mineral industry ; Mineral resources ; Mineralization ; Mining ; Mining industry ; Noise ; Phosphate deposits ; Phosphates ; Phosphorus ; Rocks ; Seismic exploration ; Seismic velocities ; Surface water waves ; Surface waves ; Sustainable development ; Three dimensional models ; Tomography ; Velocity ; Wave propagation ; Wave velocity ; Wavelengths ; Windows (intervals) ; Workflow</subject><ispartof>Solid earth (Göttingen), 2022-03, Vol.13 (2), p.417-429</ispartof><rights>COPYRIGHT 2022 Copernicus GmbH</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5557799b9b0dc6d61f86b0f028bba12de4b2dbae9fdff147a80f92e962b24e793</citedby><cites>FETCH-LOGICAL-c474t-5557799b9b0dc6d61f86b0f028bba12de4b2dbae9fdff147a80f92e962b24e793</cites><orcidid>0000-0001-8830-9050 ; 0000-0001-9818-7464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2634310030/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2634310030?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Colombero, Chiara</creatorcontrib><creatorcontrib>Papadopoulou, Myrto</creatorcontrib><creatorcontrib>Kauti, Tuomas</creatorcontrib><creatorcontrib>Skyttä, Pietari</creatorcontrib><creatorcontrib>Koivisto, Emilia</creatorcontrib><creatorcontrib>Savolainen, Mikko</creatorcontrib><creatorcontrib>Socco, Laura Valentina</creatorcontrib><title>Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland)</title><title>Solid earth (Göttingen)</title><description>Surface wave (SW) methods offer promising options for an effective and sustainable development of seismic exploration, but they still remain under-exploited in hard rock sites. We present a successful application of active and passive surface wave tomography for the characterization of the southern continuation of the Siilinjärvi phosphate deposit (Finland). A semi-automatic workflow for the extraction of the path-average dispersion curves (DCs) from ambient seismic noise data is proposed, including identification of time windows with strong coherent SW signal, azimuth analysis and two-station method for DC picking. DCs retrieved from passive data are compared with active SW tomography results recently obtained at the site. Passive data are found to carry information at longer wavelengths, thus extending the investigation depth. Active and passive DCs are consequently inverted together to retrieve a deep pseudo-3D shear-wave velocity model for the site, with improved resolution. The southern continuation of the mineralization, its contacts with the host rocks and different sets of cross-cutting diabase dikes are well imaged in the final velocity model. The seismic results are compared with the latest available geological models to both validate the proposed workflow and improve the interpretation of the geometry and extent of the mineralization. Important large-scale geological boundaries and structural discontinuities are recognized from the results, demonstrating the effectiveness and advantages of the methods for mineral exploration perspectives.</description><subject>Azimuth</subject><subject>Comparative analysis</subject><subject>Cross cutting</subject><subject>Dikes</subject><subject>Discovery and exploration</subject><subject>Dispersion curve analysis</subject><subject>Earth science</subject><subject>Embankments</subject><subject>Geology</subject><subject>Methods</subject><subject>Mine surveying</subject><subject>Mineral exploration</subject><subject>Mineral industry</subject><subject>Mineral resources</subject><subject>Mineralization</subject><subject>Mining</subject><subject>Mining industry</subject><subject>Noise</subject><subject>Phosphate deposits</subject><subject>Phosphates</subject><subject>Phosphorus</subject><subject>Rocks</subject><subject>Seismic exploration</subject><subject>Seismic velocities</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>Sustainable development</subject><subject>Three dimensional models</subject><subject>Tomography</subject><subject>Velocity</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><subject>Wavelengths</subject><subject>Windows (intervals)</subject><subject>Workflow</subject><issn>1869-9529</issn><issn>1869-9510</issn><issn>1869-9529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUttqFTEUDaJgOfbV54AvFpya21ziWylWDxQKHn0Oe3I5zWFmMiaZ2v6Dn-Gf-GPmnIq10ISwN3uvtXJbCL2m5LSmUrxPtqK8ErStGGHsGTqiXSMrWTP5_L_8JTpOaUfKaFrW1vwI_dws0YG21Q-4sTiHMWwjzNd32IWIRz_ZCAO2t_MQImQfpg8YcFq0tim5ZcA6jL2fDh0cHJ4hJV90YDIYdN6nBjLgtxvvBz_tfv-KNx7P1yGVFZd02OEdvvDTUCgnr9ALB0Oyx3_jCn27-Pj1_HN1efVpfX52WWnRilzVdd22UvayJ0Y3pqGua3riCOv6HigzVvTM9GClM85R0UJHnGRWNqxnwraSr9D6XtcE2Kk5-hHinQrg1aEQ4lZBzF4PVkFjHOetlRycMKQDKK_liGi7joqutFbozb3WHMP3xaasdmGJUzm-Yg0XnBLCyQNqC0XUTy7kCHr0SauzRta8Jl35jhU6fQJVprGj12Gyzpf6I8LJI0LBZHubt7CkpNabL0-K6xhSitb9uzglau8hlayiXBUPqb2H-B_xNbq9</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Colombero, Chiara</creator><creator>Papadopoulou, Myrto</creator><creator>Kauti, Tuomas</creator><creator>Skyttä, Pietari</creator><creator>Koivisto, Emilia</creator><creator>Savolainen, Mikko</creator><creator>Socco, Laura Valentina</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8830-9050</orcidid><orcidid>https://orcid.org/0000-0001-9818-7464</orcidid></search><sort><creationdate>20220301</creationdate><title>Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland)</title><author>Colombero, Chiara ; Papadopoulou, Myrto ; Kauti, Tuomas ; Skyttä, Pietari ; Koivisto, Emilia ; Savolainen, Mikko ; Socco, Laura Valentina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5557799b9b0dc6d61f86b0f028bba12de4b2dbae9fdff147a80f92e962b24e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Azimuth</topic><topic>Comparative analysis</topic><topic>Cross cutting</topic><topic>Dikes</topic><topic>Discovery and exploration</topic><topic>Dispersion curve analysis</topic><topic>Earth science</topic><topic>Embankments</topic><topic>Geology</topic><topic>Methods</topic><topic>Mine surveying</topic><topic>Mineral exploration</topic><topic>Mineral industry</topic><topic>Mineral resources</topic><topic>Mineralization</topic><topic>Mining</topic><topic>Mining industry</topic><topic>Noise</topic><topic>Phosphate deposits</topic><topic>Phosphates</topic><topic>Phosphorus</topic><topic>Rocks</topic><topic>Seismic exploration</topic><topic>Seismic velocities</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>Sustainable development</topic><topic>Three dimensional models</topic><topic>Tomography</topic><topic>Velocity</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><topic>Wavelengths</topic><topic>Windows (intervals)</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombero, Chiara</creatorcontrib><creatorcontrib>Papadopoulou, Myrto</creatorcontrib><creatorcontrib>Kauti, Tuomas</creatorcontrib><creatorcontrib>Skyttä, Pietari</creatorcontrib><creatorcontrib>Koivisto, Emilia</creatorcontrib><creatorcontrib>Savolainen, Mikko</creatorcontrib><creatorcontrib>Socco, Laura Valentina</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Solid earth (Göttingen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colombero, Chiara</au><au>Papadopoulou, Myrto</au><au>Kauti, Tuomas</au><au>Skyttä, Pietari</au><au>Koivisto, Emilia</au><au>Savolainen, Mikko</au><au>Socco, Laura Valentina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland)</atitle><jtitle>Solid earth (Göttingen)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>13</volume><issue>2</issue><spage>417</spage><epage>429</epage><pages>417-429</pages><issn>1869-9529</issn><issn>1869-9510</issn><eissn>1869-9529</eissn><abstract>Surface wave (SW) methods offer promising options for an effective and sustainable development of seismic exploration, but they still remain under-exploited in hard rock sites. We present a successful application of active and passive surface wave tomography for the characterization of the southern continuation of the Siilinjärvi phosphate deposit (Finland). A semi-automatic workflow for the extraction of the path-average dispersion curves (DCs) from ambient seismic noise data is proposed, including identification of time windows with strong coherent SW signal, azimuth analysis and two-station method for DC picking. DCs retrieved from passive data are compared with active SW tomography results recently obtained at the site. Passive data are found to carry information at longer wavelengths, thus extending the investigation depth. Active and passive DCs are consequently inverted together to retrieve a deep pseudo-3D shear-wave velocity model for the site, with improved resolution. The southern continuation of the mineralization, its contacts with the host rocks and different sets of cross-cutting diabase dikes are well imaged in the final velocity model. The seismic results are compared with the latest available geological models to both validate the proposed workflow and improve the interpretation of the geometry and extent of the mineralization. Important large-scale geological boundaries and structural discontinuities are recognized from the results, demonstrating the effectiveness and advantages of the methods for mineral exploration perspectives.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/se-13-417-2022</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8830-9050</orcidid><orcidid>https://orcid.org/0000-0001-9818-7464</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-9529 |
ispartof | Solid earth (Göttingen), 2022-03, Vol.13 (2), p.417-429 |
issn | 1869-9529 1869-9510 1869-9529 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a6df337e93af4d08aafacf04788148f3 |
source | Publicly Available Content Database |
subjects | Azimuth Comparative analysis Cross cutting Dikes Discovery and exploration Dispersion curve analysis Earth science Embankments Geology Methods Mine surveying Mineral exploration Mineral industry Mineral resources Mineralization Mining Mining industry Noise Phosphate deposits Phosphates Phosphorus Rocks Seismic exploration Seismic velocities Surface water waves Surface waves Sustainable development Three dimensional models Tomography Velocity Wave propagation Wave velocity Wavelengths Windows (intervals) Workflow |
title | Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-wave%20tomography%20for%20mineral%20exploration:%20a%20successful%20combination%20of%20passive%20and%20active%20data%20(Siilinj%C3%A4rvi%20phosphorus%20mine,%20Finland)&rft.jtitle=Solid%20earth%20(G%C3%B6ttingen)&rft.au=Colombero,%20Chiara&rft.date=2022-03-01&rft.volume=13&rft.issue=2&rft.spage=417&rft.epage=429&rft.pages=417-429&rft.issn=1869-9529&rft.eissn=1869-9529&rft_id=info:doi/10.5194/se-13-417-2022&rft_dat=%3Cgale_doaj_%3EA695350875%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-5557799b9b0dc6d61f86b0f028bba12de4b2dbae9fdff147a80f92e962b24e793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2634310030&rft_id=info:pmid/&rft_galeid=A695350875&rfr_iscdi=true |