Loading…

Potts model solver based on hybrid physical and digital architecture

The Potts model describes Ising-model-like interacting spin systems with multivalued spin components, and ground-state search problems of the Potts model can be efficiently mapped onto various integer optimization problems thanks to the rich expression of the multivalued spins. Here, we demonstrate...

Full description

Saved in:
Bibliographic Details
Published in:Communications physics 2022-05, Vol.5 (1), p.1-8, Article 137
Main Authors: Inaba, Kensuke, Inagaki, Takahiro, Igarashi, Koji, Utsunomiya, Shoko, Honjo, Toshimori, Ikuta, Takuya, Enbutsu, Koji, Umeki, Takeshi, Kasahara, Ryoichi, Inoue, Kyo, Yamamoto, Yoshihisa, Takesue, Hiroki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-21c31ed8acf2fbf80e3c14b7a9d8db4815288b95175affb1467e18fcfd5aeb903
cites cdi_FETCH-LOGICAL-c429t-21c31ed8acf2fbf80e3c14b7a9d8db4815288b95175affb1467e18fcfd5aeb903
container_end_page 8
container_issue 1
container_start_page 1
container_title Communications physics
container_volume 5
creator Inaba, Kensuke
Inagaki, Takahiro
Igarashi, Koji
Utsunomiya, Shoko
Honjo, Toshimori
Ikuta, Takuya
Enbutsu, Koji
Umeki, Takeshi
Kasahara, Ryoichi
Inoue, Kyo
Yamamoto, Yoshihisa
Takesue, Hiroki
description The Potts model describes Ising-model-like interacting spin systems with multivalued spin components, and ground-state search problems of the Potts model can be efficiently mapped onto various integer optimization problems thanks to the rich expression of the multivalued spins. Here, we demonstrate a solver of this model based on hybrid computation using physical and digital architectures, wherein a digital computer updates the interaction matrices in the iterative calculations of the physical Ising-model solvers. This update of interactions corresponds to learning from the Ising solutions, which allows us to save resources when embedding a problem in a physical system. We experimentally solved integer optimization problems (graph coloring and graph clustering) with this hybrid architecture in which the physical solver consisted of coupled degenerate optical parametric oscillators. Hybrid computing seeks to divide operations based on the strengths of digital, analogue or physical architectures. Here, approximate solutions to the multi-state Potts model are found using a physical Ising solver, networked degenerate optical parametric oscillators, repeatedly with learning processes.
doi_str_mv 10.1038/s42005-022-00908-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a6e579e5ec33400db4b198f09cce0bc3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a6e579e5ec33400db4b198f09cce0bc3</doaj_id><sourcerecordid>2671813910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-21c31ed8acf2fbf80e3c14b7a9d8db4815288b95175affb1467e18fcfd5aeb903</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgqf0BVwOuR2-SeSRLqa9CQRe6DnnctFOmTU2mQv_eGUfUlat7OJzH5RBySeGaAhc3qWAAZQ6M5QASRA4nZMK4lDmvSjj9g8_JLKUNADBaQM2rCbl7CV2Xsm1w2GYptB8YM6MTuizssvXRxMZl-_UxNVa3md65zDWrphtwtOumQ9sdIl6QM6_bhLPvOyVvD_ev86d8-fy4mN8uc1sw2eWMWk7RCW0988YLQG5pYWotnXCmELRkQhhZ0rrU3htaVDVS4a13pUYjgU_JYsx1QW_UPjZbHY8q6EZ9ESGulI5dY1tUusKyllii5bwA6OMNlcKDtBbB9OSUXI1Z-xjeD5g6tQmHuOvfV6yqqaBc0qGRjSobQ0oR_U8rBTWMr8bxVT---hpfDSY-mlIv3q0w_kb_4_oEjMyHLQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671813910</pqid></control><display><type>article</type><title>Potts model solver based on hybrid physical and digital architecture</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Inaba, Kensuke ; Inagaki, Takahiro ; Igarashi, Koji ; Utsunomiya, Shoko ; Honjo, Toshimori ; Ikuta, Takuya ; Enbutsu, Koji ; Umeki, Takeshi ; Kasahara, Ryoichi ; Inoue, Kyo ; Yamamoto, Yoshihisa ; Takesue, Hiroki</creator><creatorcontrib>Inaba, Kensuke ; Inagaki, Takahiro ; Igarashi, Koji ; Utsunomiya, Shoko ; Honjo, Toshimori ; Ikuta, Takuya ; Enbutsu, Koji ; Umeki, Takeshi ; Kasahara, Ryoichi ; Inoue, Kyo ; Yamamoto, Yoshihisa ; Takesue, Hiroki</creatorcontrib><description>The Potts model describes Ising-model-like interacting spin systems with multivalued spin components, and ground-state search problems of the Potts model can be efficiently mapped onto various integer optimization problems thanks to the rich expression of the multivalued spins. Here, we demonstrate a solver of this model based on hybrid computation using physical and digital architectures, wherein a digital computer updates the interaction matrices in the iterative calculations of the physical Ising-model solvers. This update of interactions corresponds to learning from the Ising solutions, which allows us to save resources when embedding a problem in a physical system. We experimentally solved integer optimization problems (graph coloring and graph clustering) with this hybrid architecture in which the physical solver consisted of coupled degenerate optical parametric oscillators. Hybrid computing seeks to divide operations based on the strengths of digital, analogue or physical architectures. Here, approximate solutions to the multi-state Potts model are found using a physical Ising solver, networked degenerate optical parametric oscillators, repeatedly with learning processes.</description><identifier>ISSN: 2399-3650</identifier><identifier>EISSN: 2399-3650</identifier><identifier>DOI: 10.1038/s42005-022-00908-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/25 ; 639/766/400/385 ; Clustering ; Digital computers ; Graph coloring ; Integers ; Ising model ; Iterative methods ; Learning ; Optical Parametric Oscillators ; Optimization ; Parametric amplifiers ; Physics ; Physics and Astronomy ; Solvers</subject><ispartof>Communications physics, 2022-05, Vol.5 (1), p.1-8, Article 137</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-21c31ed8acf2fbf80e3c14b7a9d8db4815288b95175affb1467e18fcfd5aeb903</citedby><cites>FETCH-LOGICAL-c429t-21c31ed8acf2fbf80e3c14b7a9d8db4815288b95175affb1467e18fcfd5aeb903</cites><orcidid>0000-0003-1227-4925 ; 0000-0003-3371-9583 ; 0000-0002-2176-9842 ; 0000-0003-1322-8744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2671813910?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Inaba, Kensuke</creatorcontrib><creatorcontrib>Inagaki, Takahiro</creatorcontrib><creatorcontrib>Igarashi, Koji</creatorcontrib><creatorcontrib>Utsunomiya, Shoko</creatorcontrib><creatorcontrib>Honjo, Toshimori</creatorcontrib><creatorcontrib>Ikuta, Takuya</creatorcontrib><creatorcontrib>Enbutsu, Koji</creatorcontrib><creatorcontrib>Umeki, Takeshi</creatorcontrib><creatorcontrib>Kasahara, Ryoichi</creatorcontrib><creatorcontrib>Inoue, Kyo</creatorcontrib><creatorcontrib>Yamamoto, Yoshihisa</creatorcontrib><creatorcontrib>Takesue, Hiroki</creatorcontrib><title>Potts model solver based on hybrid physical and digital architecture</title><title>Communications physics</title><addtitle>Commun Phys</addtitle><description>The Potts model describes Ising-model-like interacting spin systems with multivalued spin components, and ground-state search problems of the Potts model can be efficiently mapped onto various integer optimization problems thanks to the rich expression of the multivalued spins. Here, we demonstrate a solver of this model based on hybrid computation using physical and digital architectures, wherein a digital computer updates the interaction matrices in the iterative calculations of the physical Ising-model solvers. This update of interactions corresponds to learning from the Ising solutions, which allows us to save resources when embedding a problem in a physical system. We experimentally solved integer optimization problems (graph coloring and graph clustering) with this hybrid architecture in which the physical solver consisted of coupled degenerate optical parametric oscillators. Hybrid computing seeks to divide operations based on the strengths of digital, analogue or physical architectures. Here, approximate solutions to the multi-state Potts model are found using a physical Ising solver, networked degenerate optical parametric oscillators, repeatedly with learning processes.</description><subject>639/766/25</subject><subject>639/766/400/385</subject><subject>Clustering</subject><subject>Digital computers</subject><subject>Graph coloring</subject><subject>Integers</subject><subject>Ising model</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Optical Parametric Oscillators</subject><subject>Optimization</subject><subject>Parametric amplifiers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solvers</subject><issn>2399-3650</issn><issn>2399-3650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UMtKAzEUDaJgqf0BVwOuR2-SeSRLqa9CQRe6DnnctFOmTU2mQv_eGUfUlat7OJzH5RBySeGaAhc3qWAAZQ6M5QASRA4nZMK4lDmvSjj9g8_JLKUNADBaQM2rCbl7CV2Xsm1w2GYptB8YM6MTuizssvXRxMZl-_UxNVa3md65zDWrphtwtOumQ9sdIl6QM6_bhLPvOyVvD_ev86d8-fy4mN8uc1sw2eWMWk7RCW0988YLQG5pYWotnXCmELRkQhhZ0rrU3htaVDVS4a13pUYjgU_JYsx1QW_UPjZbHY8q6EZ9ESGulI5dY1tUusKyllii5bwA6OMNlcKDtBbB9OSUXI1Z-xjeD5g6tQmHuOvfV6yqqaBc0qGRjSobQ0oR_U8rBTWMr8bxVT---hpfDSY-mlIv3q0w_kb_4_oEjMyHLQ</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Inaba, Kensuke</creator><creator>Inagaki, Takahiro</creator><creator>Igarashi, Koji</creator><creator>Utsunomiya, Shoko</creator><creator>Honjo, Toshimori</creator><creator>Ikuta, Takuya</creator><creator>Enbutsu, Koji</creator><creator>Umeki, Takeshi</creator><creator>Kasahara, Ryoichi</creator><creator>Inoue, Kyo</creator><creator>Yamamoto, Yoshihisa</creator><creator>Takesue, Hiroki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1227-4925</orcidid><orcidid>https://orcid.org/0000-0003-3371-9583</orcidid><orcidid>https://orcid.org/0000-0002-2176-9842</orcidid><orcidid>https://orcid.org/0000-0003-1322-8744</orcidid></search><sort><creationdate>20220531</creationdate><title>Potts model solver based on hybrid physical and digital architecture</title><author>Inaba, Kensuke ; Inagaki, Takahiro ; Igarashi, Koji ; Utsunomiya, Shoko ; Honjo, Toshimori ; Ikuta, Takuya ; Enbutsu, Koji ; Umeki, Takeshi ; Kasahara, Ryoichi ; Inoue, Kyo ; Yamamoto, Yoshihisa ; Takesue, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-21c31ed8acf2fbf80e3c14b7a9d8db4815288b95175affb1467e18fcfd5aeb903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/25</topic><topic>639/766/400/385</topic><topic>Clustering</topic><topic>Digital computers</topic><topic>Graph coloring</topic><topic>Integers</topic><topic>Ising model</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Optical Parametric Oscillators</topic><topic>Optimization</topic><topic>Parametric amplifiers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inaba, Kensuke</creatorcontrib><creatorcontrib>Inagaki, Takahiro</creatorcontrib><creatorcontrib>Igarashi, Koji</creatorcontrib><creatorcontrib>Utsunomiya, Shoko</creatorcontrib><creatorcontrib>Honjo, Toshimori</creatorcontrib><creatorcontrib>Ikuta, Takuya</creatorcontrib><creatorcontrib>Enbutsu, Koji</creatorcontrib><creatorcontrib>Umeki, Takeshi</creatorcontrib><creatorcontrib>Kasahara, Ryoichi</creatorcontrib><creatorcontrib>Inoue, Kyo</creatorcontrib><creatorcontrib>Yamamoto, Yoshihisa</creatorcontrib><creatorcontrib>Takesue, Hiroki</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inaba, Kensuke</au><au>Inagaki, Takahiro</au><au>Igarashi, Koji</au><au>Utsunomiya, Shoko</au><au>Honjo, Toshimori</au><au>Ikuta, Takuya</au><au>Enbutsu, Koji</au><au>Umeki, Takeshi</au><au>Kasahara, Ryoichi</au><au>Inoue, Kyo</au><au>Yamamoto, Yoshihisa</au><au>Takesue, Hiroki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potts model solver based on hybrid physical and digital architecture</atitle><jtitle>Communications physics</jtitle><stitle>Commun Phys</stitle><date>2022-05-31</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>137</artnum><issn>2399-3650</issn><eissn>2399-3650</eissn><abstract>The Potts model describes Ising-model-like interacting spin systems with multivalued spin components, and ground-state search problems of the Potts model can be efficiently mapped onto various integer optimization problems thanks to the rich expression of the multivalued spins. Here, we demonstrate a solver of this model based on hybrid computation using physical and digital architectures, wherein a digital computer updates the interaction matrices in the iterative calculations of the physical Ising-model solvers. This update of interactions corresponds to learning from the Ising solutions, which allows us to save resources when embedding a problem in a physical system. We experimentally solved integer optimization problems (graph coloring and graph clustering) with this hybrid architecture in which the physical solver consisted of coupled degenerate optical parametric oscillators. Hybrid computing seeks to divide operations based on the strengths of digital, analogue or physical architectures. Here, approximate solutions to the multi-state Potts model are found using a physical Ising solver, networked degenerate optical parametric oscillators, repeatedly with learning processes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42005-022-00908-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1227-4925</orcidid><orcidid>https://orcid.org/0000-0003-3371-9583</orcidid><orcidid>https://orcid.org/0000-0002-2176-9842</orcidid><orcidid>https://orcid.org/0000-0003-1322-8744</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3650
ispartof Communications physics, 2022-05, Vol.5 (1), p.1-8, Article 137
issn 2399-3650
2399-3650
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a6e579e5ec33400db4b198f09cce0bc3
source Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/25
639/766/400/385
Clustering
Digital computers
Graph coloring
Integers
Ising model
Iterative methods
Learning
Optical Parametric Oscillators
Optimization
Parametric amplifiers
Physics
Physics and Astronomy
Solvers
title Potts model solver based on hybrid physical and digital architecture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potts%20model%20solver%20based%20on%20hybrid%20physical%20and%20digital%20architecture&rft.jtitle=Communications%20physics&rft.au=Inaba,%20Kensuke&rft.date=2022-05-31&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=137&rft.issn=2399-3650&rft.eissn=2399-3650&rft_id=info:doi/10.1038/s42005-022-00908-0&rft_dat=%3Cproquest_doaj_%3E2671813910%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-21c31ed8acf2fbf80e3c14b7a9d8db4815288b95175affb1467e18fcfd5aeb903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2671813910&rft_id=info:pmid/&rfr_iscdi=true