Loading…

Experimental evaluation of two-layer air bubble curtains to prevent seawater intrusion into rivers

The seawater intrusion (SWI) into rivers can lead to many negative consequences, especially on agricultural activities and live ecosystems in upstream areas of rivers. One solution to prevent SWI is using air bubble curtains (ABCs). The objective of this study is to investigate the optimal location...

Full description

Saved in:
Bibliographic Details
Published in:Journal of water and climate change 2023-02, Vol.14 (2), p.543-558
Main Authors: Kahrizi, Ehsan, Salehi Neyshabouri, Seyed Ali Akbar, Zeynolabedin, Amin, Souri, Javad, Akbari, Hassan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The seawater intrusion (SWI) into rivers can lead to many negative consequences, especially on agricultural activities and live ecosystems in upstream areas of rivers. One solution to prevent SWI is using air bubble curtains (ABCs). The objective of this study is to investigate the optimal location of ABCs and airflows. To this end, several tests with different flow and salinity rates were performed and effect of ABC location on SWI investigated. The results show that, when the ratio of seawater to freshwater densities increased from 1.006 to 1.010, the ratio of saline wedge tip velocity to seawater velocity, airflow to seawater discharge ratio for first and second ABCs are raised 60, 58, and 70%, respectively. Also, when the Froude number (Fr) > 0.031, seawater density changes do not significantly affect the process of SWI. Besides, results of the study show that the closer the ABC is to the river downstream, the higher the airflow rates required. In addition, the optimal value of air bubbles for controlling SWI depends on the density of seawater, where more airflow is required to control denser flows. Finally, the regression equations to predict the SWI parameters based on flow properties were derived.
ISSN:2040-2244
2408-9354
DOI:10.2166/wcc.2023.384