Loading…

AI-Assisted Vision for Agricultural Robots

Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots,...

Full description

Saved in:
Bibliographic Details
Published in:AgriEngineering 2022-08, Vol.4 (3), p.674-694
Main Authors: Fountas, Spyros, Malounas, Ioannis, Athanasakos, Loukas, Avgoustakis, Ioannis, Espejo-Garcia, Borja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93
cites cdi_FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93
container_end_page 694
container_issue 3
container_start_page 674
container_title AgriEngineering
container_volume 4
creator Fountas, Spyros
Malounas, Ioannis
Athanasakos, Loukas
Avgoustakis, Ioannis
Espejo-Garcia, Borja
description Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots, where such solutions can aid in making farming easier for the farmers, safer, and with greater margins for profit, while at the same time offering higher quality products with minimal environmental impact. This paper focuses on reviewing the existing state of the art for vision-based perception in agricultural robots across a variety of field operations; specifically: weed detection, crop scouting, phenotyping, disease detection, vision-based navigation, harvesting, and spraying. The review revealed a large interest in the uptake of vision-based solutions in agricultural robotics, with RGB cameras being the most popular sensor of choice. It also outlined that AI can achieve promising results and that there is not a single algorithm that outperforms all others; instead, different artificial intelligence techniques offer their unique advantages to address specific agronomic problems.
doi_str_mv 10.3390/agriengineering4030043
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a6f947d965ff4e328ef2979abf8a3e13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a6f947d965ff4e328ef2979abf8a3e13</doaj_id><sourcerecordid>2716467715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93</originalsourceid><addsrcrecordid>eNptkEtLxDAUhYMoOOj8BSm4E6p5NeldlsHHwIAg6jak6U3JUJsx6Sz891ZHxIWre7gcvnM4hFwwei0E0Bvbp4BjH0bEFMZeUkGpFEdkwRWXpZaUH__Rp2SZ85ZSyisqK4AFuWrWZZNzyBN2xWvIIY6Fj6loZq7bD9M-2aF4im2c8jk58XbIuPy5Z-Tl7vZ59VBuHu_Xq2ZTOqHUVDLdAvOUVVjXnQbggFrJ2lEqAKgDwbj2slYMvXeSOVtp5hE1qxEVtCDOyPrA7aLdml0KbzZ9mGiD-X7E1BubpuAGNFZ5kLoDVXkvUfAaPQcNtvW1FcjEzLo8sHYpvu8xT2Yb92mc6xuumZJKa1bNLnVwuRRzTuh_Uxk1XzOb_2cWn4D9cqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716467715</pqid></control><display><type>article</type><title>AI-Assisted Vision for Agricultural Robots</title><source>Publicly Available Content Database</source><creator>Fountas, Spyros ; Malounas, Ioannis ; Athanasakos, Loukas ; Avgoustakis, Ioannis ; Espejo-Garcia, Borja</creator><creatorcontrib>Fountas, Spyros ; Malounas, Ioannis ; Athanasakos, Loukas ; Avgoustakis, Ioannis ; Espejo-Garcia, Borja</creatorcontrib><description>Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots, where such solutions can aid in making farming easier for the farmers, safer, and with greater margins for profit, while at the same time offering higher quality products with minimal environmental impact. This paper focuses on reviewing the existing state of the art for vision-based perception in agricultural robots across a variety of field operations; specifically: weed detection, crop scouting, phenotyping, disease detection, vision-based navigation, harvesting, and spraying. The review revealed a large interest in the uptake of vision-based solutions in agricultural robotics, with RGB cameras being the most popular sensor of choice. It also outlined that AI can achieve promising results and that there is not a single algorithm that outperforms all others; instead, different artificial intelligence techniques offer their unique advantages to address specific agronomic problems.</description><identifier>ISSN: 2624-7402</identifier><identifier>EISSN: 2624-7402</identifier><identifier>DOI: 10.3390/agriengineering4030043</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; agtech ; Algorithms ; Artificial intelligence ; Cameras ; computer vision ; Crop diseases ; Disease detection ; Environmental impact ; Harvest ; Harvesting ; Literature reviews ; Pesticides ; Phenotyping ; Robotics ; Robots ; Sensors ; Software ; Spraying ; State-of-the-art reviews ; Technological change ; Weeds</subject><ispartof>AgriEngineering, 2022-08, Vol.4 (3), p.674-694</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93</citedby><cites>FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93</cites><orcidid>0000-0001-7874-127X ; 0000-0003-2733-680X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716467715/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716467715?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Fountas, Spyros</creatorcontrib><creatorcontrib>Malounas, Ioannis</creatorcontrib><creatorcontrib>Athanasakos, Loukas</creatorcontrib><creatorcontrib>Avgoustakis, Ioannis</creatorcontrib><creatorcontrib>Espejo-Garcia, Borja</creatorcontrib><title>AI-Assisted Vision for Agricultural Robots</title><title>AgriEngineering</title><description>Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots, where such solutions can aid in making farming easier for the farmers, safer, and with greater margins for profit, while at the same time offering higher quality products with minimal environmental impact. This paper focuses on reviewing the existing state of the art for vision-based perception in agricultural robots across a variety of field operations; specifically: weed detection, crop scouting, phenotyping, disease detection, vision-based navigation, harvesting, and spraying. The review revealed a large interest in the uptake of vision-based solutions in agricultural robotics, with RGB cameras being the most popular sensor of choice. It also outlined that AI can achieve promising results and that there is not a single algorithm that outperforms all others; instead, different artificial intelligence techniques offer their unique advantages to address specific agronomic problems.</description><subject>Agriculture</subject><subject>agtech</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>computer vision</subject><subject>Crop diseases</subject><subject>Disease detection</subject><subject>Environmental impact</subject><subject>Harvest</subject><subject>Harvesting</subject><subject>Literature reviews</subject><subject>Pesticides</subject><subject>Phenotyping</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Software</subject><subject>Spraying</subject><subject>State-of-the-art reviews</subject><subject>Technological change</subject><subject>Weeds</subject><issn>2624-7402</issn><issn>2624-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkEtLxDAUhYMoOOj8BSm4E6p5NeldlsHHwIAg6jak6U3JUJsx6Sz891ZHxIWre7gcvnM4hFwwei0E0Bvbp4BjH0bEFMZeUkGpFEdkwRWXpZaUH__Rp2SZ85ZSyisqK4AFuWrWZZNzyBN2xWvIIY6Fj6loZq7bD9M-2aF4im2c8jk58XbIuPy5Z-Tl7vZ59VBuHu_Xq2ZTOqHUVDLdAvOUVVjXnQbggFrJ2lEqAKgDwbj2slYMvXeSOVtp5hE1qxEVtCDOyPrA7aLdml0KbzZ9mGiD-X7E1BubpuAGNFZ5kLoDVXkvUfAaPQcNtvW1FcjEzLo8sHYpvu8xT2Yb92mc6xuumZJKa1bNLnVwuRRzTuh_Uxk1XzOb_2cWn4D9cqg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Fountas, Spyros</creator><creator>Malounas, Ioannis</creator><creator>Athanasakos, Loukas</creator><creator>Avgoustakis, Ioannis</creator><creator>Espejo-Garcia, Borja</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7874-127X</orcidid><orcidid>https://orcid.org/0000-0003-2733-680X</orcidid></search><sort><creationdate>20220801</creationdate><title>AI-Assisted Vision for Agricultural Robots</title><author>Fountas, Spyros ; Malounas, Ioannis ; Athanasakos, Loukas ; Avgoustakis, Ioannis ; Espejo-Garcia, Borja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>agtech</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>computer vision</topic><topic>Crop diseases</topic><topic>Disease detection</topic><topic>Environmental impact</topic><topic>Harvest</topic><topic>Harvesting</topic><topic>Literature reviews</topic><topic>Pesticides</topic><topic>Phenotyping</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Software</topic><topic>Spraying</topic><topic>State-of-the-art reviews</topic><topic>Technological change</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fountas, Spyros</creatorcontrib><creatorcontrib>Malounas, Ioannis</creatorcontrib><creatorcontrib>Athanasakos, Loukas</creatorcontrib><creatorcontrib>Avgoustakis, Ioannis</creatorcontrib><creatorcontrib>Espejo-Garcia, Borja</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AgriEngineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fountas, Spyros</au><au>Malounas, Ioannis</au><au>Athanasakos, Loukas</au><au>Avgoustakis, Ioannis</au><au>Espejo-Garcia, Borja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Assisted Vision for Agricultural Robots</atitle><jtitle>AgriEngineering</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>4</volume><issue>3</issue><spage>674</spage><epage>694</epage><pages>674-694</pages><issn>2624-7402</issn><eissn>2624-7402</eissn><abstract>Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots, where such solutions can aid in making farming easier for the farmers, safer, and with greater margins for profit, while at the same time offering higher quality products with minimal environmental impact. This paper focuses on reviewing the existing state of the art for vision-based perception in agricultural robots across a variety of field operations; specifically: weed detection, crop scouting, phenotyping, disease detection, vision-based navigation, harvesting, and spraying. The review revealed a large interest in the uptake of vision-based solutions in agricultural robotics, with RGB cameras being the most popular sensor of choice. It also outlined that AI can achieve promising results and that there is not a single algorithm that outperforms all others; instead, different artificial intelligence techniques offer their unique advantages to address specific agronomic problems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriengineering4030043</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7874-127X</orcidid><orcidid>https://orcid.org/0000-0003-2733-680X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2624-7402
ispartof AgriEngineering, 2022-08, Vol.4 (3), p.674-694
issn 2624-7402
2624-7402
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a6f947d965ff4e328ef2979abf8a3e13
source Publicly Available Content Database
subjects Agriculture
agtech
Algorithms
Artificial intelligence
Cameras
computer vision
Crop diseases
Disease detection
Environmental impact
Harvest
Harvesting
Literature reviews
Pesticides
Phenotyping
Robotics
Robots
Sensors
Software
Spraying
State-of-the-art reviews
Technological change
Weeds
title AI-Assisted Vision for Agricultural Robots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Assisted%20Vision%20for%20Agricultural%20Robots&rft.jtitle=AgriEngineering&rft.au=Fountas,%20Spyros&rft.date=2022-08-01&rft.volume=4&rft.issue=3&rft.spage=674&rft.epage=694&rft.pages=674-694&rft.issn=2624-7402&rft.eissn=2624-7402&rft_id=info:doi/10.3390/agriengineering4030043&rft_dat=%3Cproquest_doaj_%3E2716467715%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716467715&rft_id=info:pmid/&rfr_iscdi=true