Loading…
AI-Assisted Vision for Agricultural Robots
Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots,...
Saved in:
Published in: | AgriEngineering 2022-08, Vol.4 (3), p.674-694 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93 |
container_end_page | 694 |
container_issue | 3 |
container_start_page | 674 |
container_title | AgriEngineering |
container_volume | 4 |
creator | Fountas, Spyros Malounas, Ioannis Athanasakos, Loukas Avgoustakis, Ioannis Espejo-Garcia, Borja |
description | Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots, where such solutions can aid in making farming easier for the farmers, safer, and with greater margins for profit, while at the same time offering higher quality products with minimal environmental impact. This paper focuses on reviewing the existing state of the art for vision-based perception in agricultural robots across a variety of field operations; specifically: weed detection, crop scouting, phenotyping, disease detection, vision-based navigation, harvesting, and spraying. The review revealed a large interest in the uptake of vision-based solutions in agricultural robotics, with RGB cameras being the most popular sensor of choice. It also outlined that AI can achieve promising results and that there is not a single algorithm that outperforms all others; instead, different artificial intelligence techniques offer their unique advantages to address specific agronomic problems. |
doi_str_mv | 10.3390/agriengineering4030043 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a6f947d965ff4e328ef2979abf8a3e13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a6f947d965ff4e328ef2979abf8a3e13</doaj_id><sourcerecordid>2716467715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93</originalsourceid><addsrcrecordid>eNptkEtLxDAUhYMoOOj8BSm4E6p5NeldlsHHwIAg6jak6U3JUJsx6Sz891ZHxIWre7gcvnM4hFwwei0E0Bvbp4BjH0bEFMZeUkGpFEdkwRWXpZaUH__Rp2SZ85ZSyisqK4AFuWrWZZNzyBN2xWvIIY6Fj6loZq7bD9M-2aF4im2c8jk58XbIuPy5Z-Tl7vZ59VBuHu_Xq2ZTOqHUVDLdAvOUVVjXnQbggFrJ2lEqAKgDwbj2slYMvXeSOVtp5hE1qxEVtCDOyPrA7aLdml0KbzZ9mGiD-X7E1BubpuAGNFZ5kLoDVXkvUfAaPQcNtvW1FcjEzLo8sHYpvu8xT2Yb92mc6xuumZJKa1bNLnVwuRRzTuh_Uxk1XzOb_2cWn4D9cqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716467715</pqid></control><display><type>article</type><title>AI-Assisted Vision for Agricultural Robots</title><source>Publicly Available Content Database</source><creator>Fountas, Spyros ; Malounas, Ioannis ; Athanasakos, Loukas ; Avgoustakis, Ioannis ; Espejo-Garcia, Borja</creator><creatorcontrib>Fountas, Spyros ; Malounas, Ioannis ; Athanasakos, Loukas ; Avgoustakis, Ioannis ; Espejo-Garcia, Borja</creatorcontrib><description>Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots, where such solutions can aid in making farming easier for the farmers, safer, and with greater margins for profit, while at the same time offering higher quality products with minimal environmental impact. This paper focuses on reviewing the existing state of the art for vision-based perception in agricultural robots across a variety of field operations; specifically: weed detection, crop scouting, phenotyping, disease detection, vision-based navigation, harvesting, and spraying. The review revealed a large interest in the uptake of vision-based solutions in agricultural robotics, with RGB cameras being the most popular sensor of choice. It also outlined that AI can achieve promising results and that there is not a single algorithm that outperforms all others; instead, different artificial intelligence techniques offer their unique advantages to address specific agronomic problems.</description><identifier>ISSN: 2624-7402</identifier><identifier>EISSN: 2624-7402</identifier><identifier>DOI: 10.3390/agriengineering4030043</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; agtech ; Algorithms ; Artificial intelligence ; Cameras ; computer vision ; Crop diseases ; Disease detection ; Environmental impact ; Harvest ; Harvesting ; Literature reviews ; Pesticides ; Phenotyping ; Robotics ; Robots ; Sensors ; Software ; Spraying ; State-of-the-art reviews ; Technological change ; Weeds</subject><ispartof>AgriEngineering, 2022-08, Vol.4 (3), p.674-694</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93</citedby><cites>FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93</cites><orcidid>0000-0001-7874-127X ; 0000-0003-2733-680X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716467715/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716467715?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Fountas, Spyros</creatorcontrib><creatorcontrib>Malounas, Ioannis</creatorcontrib><creatorcontrib>Athanasakos, Loukas</creatorcontrib><creatorcontrib>Avgoustakis, Ioannis</creatorcontrib><creatorcontrib>Espejo-Garcia, Borja</creatorcontrib><title>AI-Assisted Vision for Agricultural Robots</title><title>AgriEngineering</title><description>Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots, where such solutions can aid in making farming easier for the farmers, safer, and with greater margins for profit, while at the same time offering higher quality products with minimal environmental impact. This paper focuses on reviewing the existing state of the art for vision-based perception in agricultural robots across a variety of field operations; specifically: weed detection, crop scouting, phenotyping, disease detection, vision-based navigation, harvesting, and spraying. The review revealed a large interest in the uptake of vision-based solutions in agricultural robotics, with RGB cameras being the most popular sensor of choice. It also outlined that AI can achieve promising results and that there is not a single algorithm that outperforms all others; instead, different artificial intelligence techniques offer their unique advantages to address specific agronomic problems.</description><subject>Agriculture</subject><subject>agtech</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>computer vision</subject><subject>Crop diseases</subject><subject>Disease detection</subject><subject>Environmental impact</subject><subject>Harvest</subject><subject>Harvesting</subject><subject>Literature reviews</subject><subject>Pesticides</subject><subject>Phenotyping</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Software</subject><subject>Spraying</subject><subject>State-of-the-art reviews</subject><subject>Technological change</subject><subject>Weeds</subject><issn>2624-7402</issn><issn>2624-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkEtLxDAUhYMoOOj8BSm4E6p5NeldlsHHwIAg6jak6U3JUJsx6Sz891ZHxIWre7gcvnM4hFwwei0E0Bvbp4BjH0bEFMZeUkGpFEdkwRWXpZaUH__Rp2SZ85ZSyisqK4AFuWrWZZNzyBN2xWvIIY6Fj6loZq7bD9M-2aF4im2c8jk58XbIuPy5Z-Tl7vZ59VBuHu_Xq2ZTOqHUVDLdAvOUVVjXnQbggFrJ2lEqAKgDwbj2slYMvXeSOVtp5hE1qxEVtCDOyPrA7aLdml0KbzZ9mGiD-X7E1BubpuAGNFZ5kLoDVXkvUfAaPQcNtvW1FcjEzLo8sHYpvu8xT2Yb92mc6xuumZJKa1bNLnVwuRRzTuh_Uxk1XzOb_2cWn4D9cqg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Fountas, Spyros</creator><creator>Malounas, Ioannis</creator><creator>Athanasakos, Loukas</creator><creator>Avgoustakis, Ioannis</creator><creator>Espejo-Garcia, Borja</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7874-127X</orcidid><orcidid>https://orcid.org/0000-0003-2733-680X</orcidid></search><sort><creationdate>20220801</creationdate><title>AI-Assisted Vision for Agricultural Robots</title><author>Fountas, Spyros ; Malounas, Ioannis ; Athanasakos, Loukas ; Avgoustakis, Ioannis ; Espejo-Garcia, Borja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>agtech</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>computer vision</topic><topic>Crop diseases</topic><topic>Disease detection</topic><topic>Environmental impact</topic><topic>Harvest</topic><topic>Harvesting</topic><topic>Literature reviews</topic><topic>Pesticides</topic><topic>Phenotyping</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Software</topic><topic>Spraying</topic><topic>State-of-the-art reviews</topic><topic>Technological change</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fountas, Spyros</creatorcontrib><creatorcontrib>Malounas, Ioannis</creatorcontrib><creatorcontrib>Athanasakos, Loukas</creatorcontrib><creatorcontrib>Avgoustakis, Ioannis</creatorcontrib><creatorcontrib>Espejo-Garcia, Borja</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AgriEngineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fountas, Spyros</au><au>Malounas, Ioannis</au><au>Athanasakos, Loukas</au><au>Avgoustakis, Ioannis</au><au>Espejo-Garcia, Borja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Assisted Vision for Agricultural Robots</atitle><jtitle>AgriEngineering</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>4</volume><issue>3</issue><spage>674</spage><epage>694</epage><pages>674-694</pages><issn>2624-7402</issn><eissn>2624-7402</eissn><abstract>Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots, where such solutions can aid in making farming easier for the farmers, safer, and with greater margins for profit, while at the same time offering higher quality products with minimal environmental impact. This paper focuses on reviewing the existing state of the art for vision-based perception in agricultural robots across a variety of field operations; specifically: weed detection, crop scouting, phenotyping, disease detection, vision-based navigation, harvesting, and spraying. The review revealed a large interest in the uptake of vision-based solutions in agricultural robotics, with RGB cameras being the most popular sensor of choice. It also outlined that AI can achieve promising results and that there is not a single algorithm that outperforms all others; instead, different artificial intelligence techniques offer their unique advantages to address specific agronomic problems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriengineering4030043</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7874-127X</orcidid><orcidid>https://orcid.org/0000-0003-2733-680X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2624-7402 |
ispartof | AgriEngineering, 2022-08, Vol.4 (3), p.674-694 |
issn | 2624-7402 2624-7402 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a6f947d965ff4e328ef2979abf8a3e13 |
source | Publicly Available Content Database |
subjects | Agriculture agtech Algorithms Artificial intelligence Cameras computer vision Crop diseases Disease detection Environmental impact Harvest Harvesting Literature reviews Pesticides Phenotyping Robotics Robots Sensors Software Spraying State-of-the-art reviews Technological change Weeds |
title | AI-Assisted Vision for Agricultural Robots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Assisted%20Vision%20for%20Agricultural%20Robots&rft.jtitle=AgriEngineering&rft.au=Fountas,%20Spyros&rft.date=2022-08-01&rft.volume=4&rft.issue=3&rft.spage=674&rft.epage=694&rft.pages=674-694&rft.issn=2624-7402&rft.eissn=2624-7402&rft_id=info:doi/10.3390/agriengineering4030043&rft_dat=%3Cproquest_doaj_%3E2716467715%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-17b91f015e88d79929e7648c003990c93127f4861effc41ca571fee718ee69b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716467715&rft_id=info:pmid/&rfr_iscdi=true |