Loading…

Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy

Tomato-based products are significant components of vegetable consumption. The processing tomato industry is unquestionably in need of a rapid definition method for measuring soluble solids content (SSC) and lycopene content. The objective was to find the best chemometric method for the estimation o...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in nutrition (Lausanne) 2022-06, Vol.9, p.845317-845317
Main Authors: Égei, Márton, Takács, Sándor, Palotás, Gábor, Palotás, Gabriella, Szuvandzsiev, Péter, Daood, Hussein Gehad, Helyes, Lajos, Pék, Zoltán
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-911b0feeb61f1788f2085b3cc22317b07c32a13e4eff69d2af5cda5038aa8453
cites cdi_FETCH-LOGICAL-c369t-911b0feeb61f1788f2085b3cc22317b07c32a13e4eff69d2af5cda5038aa8453
container_end_page 845317
container_issue
container_start_page 845317
container_title Frontiers in nutrition (Lausanne)
container_volume 9
creator Égei, Márton
Takács, Sándor
Palotás, Gábor
Palotás, Gabriella
Szuvandzsiev, Péter
Daood, Hussein Gehad
Helyes, Lajos
Pék, Zoltán
description Tomato-based products are significant components of vegetable consumption. The processing tomato industry is unquestionably in need of a rapid definition method for measuring soluble solids content (SSC) and lycopene content. The objective was to find the best chemometric method for the estimation of SSC and lycopene content from visible and near-infrared (Vis-NIR) absorbance and reflectance data so that they could be determined without the use of chemicals in the process. A total of 326 Vis-NIR absorbance and reflectance spectra and reference measurements were available to calibrate and validate prediction models. The obtained spectra can be manipulated using different preprocessing methods and multivariate data analysis techniques to develop prediction models for these two main quality attributes of tomato fruits. Eight different method combinations were compared in homogenized and intact fruit samples. For SSC prediction, the results showed that the best root mean squared error of cross-validation (RMSECV) originated from raw absorbance (0.58) data and with multiplicative scatter correction (MSC) (0.59) of intact fruit in Vis-NIR, and first derivatives of reflectance ( R 2 = 0.41) for homogenate in the short-wave infrared (SWIR) region. The best predictive ability for lycopene content of homogenate in the SWIR range ( R 2 = 0.47; RMSECV = 17.95 mg kg –1 ) was slightly lower than that of Vis-NIR ( R 2 = 0.68; 15.07 mg kg –1 ). This study reports the suitability of two Vis-NIR spectrometers, absorbance/reflectance spectra, preprocessing methods, and partial least square (PLS) regression to predict SSC and lycopene content of intact tomato fruit and its homogenate.
doi_str_mv 10.3389/fnut.2022.845317
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a6fed65ecacb4bd9b54f67f15f9a3f18</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a6fed65ecacb4bd9b54f67f15f9a3f18</doaj_id><sourcerecordid>2691048260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-911b0feeb61f1788f2085b3cc22317b07c32a13e4eff69d2af5cda5038aa8453</originalsourceid><addsrcrecordid>eNpVkctrGzEQxpfS0oQ09x517GVdPVZa6VIopg-DSUNjSm9Cj5GjsF65kjbg_767dSjJaYaZj988vqZ5T_CKMak-hnGqK4opXcmOM9K_ai4pVaKVgvx-_Sy_aK5LecAYE0Z5R7q3zQXjkgmu8GVzf5vBR1djGlEK6C4Nkx1gidEXZEaPtieXjjACWqexwlgX2W1ODkqJ4x7t0sHUhNbTUOOjyQXZE_oVS3uz-YnujuBqTmUGnN41b4IZClw_xatm9_XLbv293f74tll_3raOCVVbRYjFAcAKEkgvZaBYcsuco3Q-0eLeMWoIgw5CEMpTE7jzhmMmjVnecNVszlifzIM-5ngw-aSTifpfIeW9NrlGN4A2IoAXHJxxtrNeWd4F0QfCgzIsEDmzPp1Zx8kewLv5-GyGF9CXnTHe63161Ir2HVHLMh-eADn9maBUfYjFwTCYEdJUNBWK4E5SgWcpPkvd_K-SIfwfQ7Be7NaL3XqxW5_tZn8Bcsmfww</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691048260</pqid></control><display><type>article</type><title>Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy</title><source>PubMed (Medline)</source><creator>Égei, Márton ; Takács, Sándor ; Palotás, Gábor ; Palotás, Gabriella ; Szuvandzsiev, Péter ; Daood, Hussein Gehad ; Helyes, Lajos ; Pék, Zoltán</creator><creatorcontrib>Égei, Márton ; Takács, Sándor ; Palotás, Gábor ; Palotás, Gabriella ; Szuvandzsiev, Péter ; Daood, Hussein Gehad ; Helyes, Lajos ; Pék, Zoltán</creatorcontrib><description>Tomato-based products are significant components of vegetable consumption. The processing tomato industry is unquestionably in need of a rapid definition method for measuring soluble solids content (SSC) and lycopene content. The objective was to find the best chemometric method for the estimation of SSC and lycopene content from visible and near-infrared (Vis-NIR) absorbance and reflectance data so that they could be determined without the use of chemicals in the process. A total of 326 Vis-NIR absorbance and reflectance spectra and reference measurements were available to calibrate and validate prediction models. The obtained spectra can be manipulated using different preprocessing methods and multivariate data analysis techniques to develop prediction models for these two main quality attributes of tomato fruits. Eight different method combinations were compared in homogenized and intact fruit samples. For SSC prediction, the results showed that the best root mean squared error of cross-validation (RMSECV) originated from raw absorbance (0.58) data and with multiplicative scatter correction (MSC) (0.59) of intact fruit in Vis-NIR, and first derivatives of reflectance ( R 2 = 0.41) for homogenate in the short-wave infrared (SWIR) region. The best predictive ability for lycopene content of homogenate in the SWIR range ( R 2 = 0.47; RMSECV = 17.95 mg kg –1 ) was slightly lower than that of Vis-NIR ( R 2 = 0.68; 15.07 mg kg –1 ). This study reports the suitability of two Vis-NIR spectrometers, absorbance/reflectance spectra, preprocessing methods, and partial least square (PLS) regression to predict SSC and lycopene content of intact tomato fruit and its homogenate.</description><identifier>ISSN: 2296-861X</identifier><identifier>EISSN: 2296-861X</identifier><identifier>DOI: 10.3389/fnut.2022.845317</identifier><identifier>PMID: 35836590</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>absorbance ; lycopene ; Nutrition ; spectroscopy ; SSC ; tomato ; Vis-NIR</subject><ispartof>Frontiers in nutrition (Lausanne), 2022-06, Vol.9, p.845317-845317</ispartof><rights>Copyright © 2022 Égei, Takács, Palotás, Palotás, Szuvandzsiev, Daood, Helyes and Pék. 2022 Égei, Takács, Palotás, Palotás, Szuvandzsiev, Daood, Helyes and Pék</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-911b0feeb61f1788f2085b3cc22317b07c32a13e4eff69d2af5cda5038aa8453</citedby><cites>FETCH-LOGICAL-c369t-911b0feeb61f1788f2085b3cc22317b07c32a13e4eff69d2af5cda5038aa8453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274195/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274195/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Égei, Márton</creatorcontrib><creatorcontrib>Takács, Sándor</creatorcontrib><creatorcontrib>Palotás, Gábor</creatorcontrib><creatorcontrib>Palotás, Gabriella</creatorcontrib><creatorcontrib>Szuvandzsiev, Péter</creatorcontrib><creatorcontrib>Daood, Hussein Gehad</creatorcontrib><creatorcontrib>Helyes, Lajos</creatorcontrib><creatorcontrib>Pék, Zoltán</creatorcontrib><title>Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy</title><title>Frontiers in nutrition (Lausanne)</title><description>Tomato-based products are significant components of vegetable consumption. The processing tomato industry is unquestionably in need of a rapid definition method for measuring soluble solids content (SSC) and lycopene content. The objective was to find the best chemometric method for the estimation of SSC and lycopene content from visible and near-infrared (Vis-NIR) absorbance and reflectance data so that they could be determined without the use of chemicals in the process. A total of 326 Vis-NIR absorbance and reflectance spectra and reference measurements were available to calibrate and validate prediction models. The obtained spectra can be manipulated using different preprocessing methods and multivariate data analysis techniques to develop prediction models for these two main quality attributes of tomato fruits. Eight different method combinations were compared in homogenized and intact fruit samples. For SSC prediction, the results showed that the best root mean squared error of cross-validation (RMSECV) originated from raw absorbance (0.58) data and with multiplicative scatter correction (MSC) (0.59) of intact fruit in Vis-NIR, and first derivatives of reflectance ( R 2 = 0.41) for homogenate in the short-wave infrared (SWIR) region. The best predictive ability for lycopene content of homogenate in the SWIR range ( R 2 = 0.47; RMSECV = 17.95 mg kg –1 ) was slightly lower than that of Vis-NIR ( R 2 = 0.68; 15.07 mg kg –1 ). This study reports the suitability of two Vis-NIR spectrometers, absorbance/reflectance spectra, preprocessing methods, and partial least square (PLS) regression to predict SSC and lycopene content of intact tomato fruit and its homogenate.</description><subject>absorbance</subject><subject>lycopene</subject><subject>Nutrition</subject><subject>spectroscopy</subject><subject>SSC</subject><subject>tomato</subject><subject>Vis-NIR</subject><issn>2296-861X</issn><issn>2296-861X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkctrGzEQxpfS0oQ09x517GVdPVZa6VIopg-DSUNjSm9Cj5GjsF65kjbg_767dSjJaYaZj988vqZ5T_CKMak-hnGqK4opXcmOM9K_ai4pVaKVgvx-_Sy_aK5LecAYE0Z5R7q3zQXjkgmu8GVzf5vBR1djGlEK6C4Nkx1gidEXZEaPtieXjjACWqexwlgX2W1ODkqJ4x7t0sHUhNbTUOOjyQXZE_oVS3uz-YnujuBqTmUGnN41b4IZClw_xatm9_XLbv293f74tll_3raOCVVbRYjFAcAKEkgvZaBYcsuco3Q-0eLeMWoIgw5CEMpTE7jzhmMmjVnecNVszlifzIM-5ngw-aSTifpfIeW9NrlGN4A2IoAXHJxxtrNeWd4F0QfCgzIsEDmzPp1Zx8kewLv5-GyGF9CXnTHe63161Ir2HVHLMh-eADn9maBUfYjFwTCYEdJUNBWK4E5SgWcpPkvd_K-SIfwfQ7Be7NaL3XqxW5_tZn8Bcsmfww</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Égei, Márton</creator><creator>Takács, Sándor</creator><creator>Palotás, Gábor</creator><creator>Palotás, Gabriella</creator><creator>Szuvandzsiev, Péter</creator><creator>Daood, Hussein Gehad</creator><creator>Helyes, Lajos</creator><creator>Pék, Zoltán</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220628</creationdate><title>Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy</title><author>Égei, Márton ; Takács, Sándor ; Palotás, Gábor ; Palotás, Gabriella ; Szuvandzsiev, Péter ; Daood, Hussein Gehad ; Helyes, Lajos ; Pék, Zoltán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-911b0feeb61f1788f2085b3cc22317b07c32a13e4eff69d2af5cda5038aa8453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>absorbance</topic><topic>lycopene</topic><topic>Nutrition</topic><topic>spectroscopy</topic><topic>SSC</topic><topic>tomato</topic><topic>Vis-NIR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Égei, Márton</creatorcontrib><creatorcontrib>Takács, Sándor</creatorcontrib><creatorcontrib>Palotás, Gábor</creatorcontrib><creatorcontrib>Palotás, Gabriella</creatorcontrib><creatorcontrib>Szuvandzsiev, Péter</creatorcontrib><creatorcontrib>Daood, Hussein Gehad</creatorcontrib><creatorcontrib>Helyes, Lajos</creatorcontrib><creatorcontrib>Pék, Zoltán</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in nutrition (Lausanne)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Égei, Márton</au><au>Takács, Sándor</au><au>Palotás, Gábor</au><au>Palotás, Gabriella</au><au>Szuvandzsiev, Péter</au><au>Daood, Hussein Gehad</au><au>Helyes, Lajos</au><au>Pék, Zoltán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy</atitle><jtitle>Frontiers in nutrition (Lausanne)</jtitle><date>2022-06-28</date><risdate>2022</risdate><volume>9</volume><spage>845317</spage><epage>845317</epage><pages>845317-845317</pages><issn>2296-861X</issn><eissn>2296-861X</eissn><abstract>Tomato-based products are significant components of vegetable consumption. The processing tomato industry is unquestionably in need of a rapid definition method for measuring soluble solids content (SSC) and lycopene content. The objective was to find the best chemometric method for the estimation of SSC and lycopene content from visible and near-infrared (Vis-NIR) absorbance and reflectance data so that they could be determined without the use of chemicals in the process. A total of 326 Vis-NIR absorbance and reflectance spectra and reference measurements were available to calibrate and validate prediction models. The obtained spectra can be manipulated using different preprocessing methods and multivariate data analysis techniques to develop prediction models for these two main quality attributes of tomato fruits. Eight different method combinations were compared in homogenized and intact fruit samples. For SSC prediction, the results showed that the best root mean squared error of cross-validation (RMSECV) originated from raw absorbance (0.58) data and with multiplicative scatter correction (MSC) (0.59) of intact fruit in Vis-NIR, and first derivatives of reflectance ( R 2 = 0.41) for homogenate in the short-wave infrared (SWIR) region. The best predictive ability for lycopene content of homogenate in the SWIR range ( R 2 = 0.47; RMSECV = 17.95 mg kg –1 ) was slightly lower than that of Vis-NIR ( R 2 = 0.68; 15.07 mg kg –1 ). This study reports the suitability of two Vis-NIR spectrometers, absorbance/reflectance spectra, preprocessing methods, and partial least square (PLS) regression to predict SSC and lycopene content of intact tomato fruit and its homogenate.</abstract><pub>Frontiers Media S.A</pub><pmid>35836590</pmid><doi>10.3389/fnut.2022.845317</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-861X
ispartof Frontiers in nutrition (Lausanne), 2022-06, Vol.9, p.845317-845317
issn 2296-861X
2296-861X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a6fed65ecacb4bd9b54f67f15f9a3f18
source PubMed (Medline)
subjects absorbance
lycopene
Nutrition
spectroscopy
SSC
tomato
Vis-NIR
title Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Soluble%20Solids%20and%20Lycopene%20Content%20of%20Processing%20Tomato%20Cultivars%20by%20Vis-NIR%20Spectroscopy&rft.jtitle=Frontiers%20in%20nutrition%20(Lausanne)&rft.au=%C3%89gei,%20M%C3%A1rton&rft.date=2022-06-28&rft.volume=9&rft.spage=845317&rft.epage=845317&rft.pages=845317-845317&rft.issn=2296-861X&rft.eissn=2296-861X&rft_id=info:doi/10.3389/fnut.2022.845317&rft_dat=%3Cproquest_doaj_%3E2691048260%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-911b0feeb61f1788f2085b3cc22317b07c32a13e4eff69d2af5cda5038aa8453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691048260&rft_id=info:pmid/35836590&rfr_iscdi=true