Loading…

Genome structure and content of the rice root‐knot nematode (Meloidogyne graminicola)

Discovered in the 1960s, Meloidogyne graminicola is a root‐knot nematode species considered as a major threat to rice production. Yet, its origin, genomic structure, and intraspecific diversity are poorly understood. So far, such studies have been limited by the unavailability of a sufficiently comp...

Full description

Saved in:
Bibliographic Details
Published in:Ecology and evolution 2020-10, Vol.10 (20), p.11006-11021
Main Authors: Phan, Ngan Thi, Orjuela, Julie, Danchin, Etienne G. J., Klopp, Christophe, Perfus‐Barbeoch, Laetitia, Kozlowski, Djampa K., Koutsovoulos, Georgios D., Lopez‐Roques, Céline, Bouchez, Olivier, Zahm, Margot, Besnard, Guillaume, Bellafiore, Stéphane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6370-66b34cf6f0a6beef7535456c726759bdbe4f08fd4ba08e75db234325790035e73
cites cdi_FETCH-LOGICAL-c6370-66b34cf6f0a6beef7535456c726759bdbe4f08fd4ba08e75db234325790035e73
container_end_page 11021
container_issue 20
container_start_page 11006
container_title Ecology and evolution
container_volume 10
creator Phan, Ngan Thi
Orjuela, Julie
Danchin, Etienne G. J.
Klopp, Christophe
Perfus‐Barbeoch, Laetitia
Kozlowski, Djampa K.
Koutsovoulos, Georgios D.
Lopez‐Roques, Céline
Bouchez, Olivier
Zahm, Margot
Besnard, Guillaume
Bellafiore, Stéphane
description Discovered in the 1960s, Meloidogyne graminicola is a root‐knot nematode species considered as a major threat to rice production. Yet, its origin, genomic structure, and intraspecific diversity are poorly understood. So far, such studies have been limited by the unavailability of a sufficiently complete and well‐assembled genome. In this study, using a combination of Oxford Nanopore Technologies and Illumina sequencing data, we generated a highly contiguous reference genome (283 scaffolds with an N50 length of 294 kb, totaling 41.5 Mb). The completeness scores of our assembly are among the highest currently published for Meloidogyne genomes. We predicted 10,284 protein‐coding genes spanning 75.5% of the genome. Among them, 67 are identified as possibly originating from horizontal gene transfers (mostly from bacteria), which supposedly contribute to nematode infection, nutrient processing, and plant defense manipulation. Besides, we detected 575 canonical transposable elements (TEs) belonging to seven orders and spanning 2.61% of the genome. These TEs might promote genomic plasticity putatively related to the evolution of M. graminicola parasitism. This high‐quality genome assembly constitutes a major improvement regarding previously available versions and represents a valuable molecular resource for future phylogenomic studies of Meloidogyne species. In particular, this will foster comparative genomic studies to trace back the evolutionary history of M. graminicola and its closest relatives. The genome of the rice root‐knot nematode (Meloidogyne graminicola) was assembled by combining short and long sequencing reads. Genes and transposable elements were annotated and then analyzed, revealing that lateral gene transfers from bacteria may have greatly contributed to the evolution of parasitism. This genome draft will foster comparative genomic studies to trace back the evolutionary history of M. graminicola and its closest relatives.
doi_str_mv 10.1002/ece3.6680
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a714aa61f0a74ca0a72d2557ccd900ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a714aa61f0a74ca0a72d2557ccd900ec</doaj_id><sourcerecordid>2455072067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6370-66b34cf6f0a6beef7535456c726759bdbe4f08fd4ba08e75db234325790035e73</originalsourceid><addsrcrecordid>eNp9ks1O3DAQx6OqVUGUQ1-gitQLHBb87eRSCa2WD2lRL616tBx7suttYlPHodpbH4Fn5EnwskABqfVhbI3__s1o_C-KjxgdYYTIMRigR0JU6E2xSxDjEyl59fbZeafYH4YVyksgwpB8X-xQihmrGdstfpyBDz2UQ4qjSWOEUntbmuAT-FSGtkxLKKMzOYSQbv_c_PQhlR56nYKF8uASuuBsWKw9lIuoe-edCZ0-_FC8a3U3wP7Dvld8P519m55P5l_PLqYn84kRVKKJEA1lphUt0qIBaCWnnHFhJBGS141tgLWoai1rNKpActsQyijhskaIcpB0r7jYcm3QK3UVXa_jWgXt1H0ixIXSMTnTgdISM60FzrUkMzpHYgnn0hibaWAy68uWdTU2PViTJxB19wL68sa7pVqEa5VbpVjWGXC4BSxfPTs_matNDpG6qqRg1zhrDx6KxfBrhCGp3g0Guk57COOgCONS1JghnqWfX0lXYYw-j1URgWuef7X-v4pxjiRBQv5t0cQwDBHapz4xUhs_qY2f1MZPWfvp-TyelI_uyYLjreC362D9b5KaTWf0HnkHZUzTFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455072067</pqid></control><display><type>article</type><title>Genome structure and content of the rice root‐knot nematode (Meloidogyne graminicola)</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Phan, Ngan Thi ; Orjuela, Julie ; Danchin, Etienne G. J. ; Klopp, Christophe ; Perfus‐Barbeoch, Laetitia ; Kozlowski, Djampa K. ; Koutsovoulos, Georgios D. ; Lopez‐Roques, Céline ; Bouchez, Olivier ; Zahm, Margot ; Besnard, Guillaume ; Bellafiore, Stéphane</creator><creatorcontrib>Phan, Ngan Thi ; Orjuela, Julie ; Danchin, Etienne G. J. ; Klopp, Christophe ; Perfus‐Barbeoch, Laetitia ; Kozlowski, Djampa K. ; Koutsovoulos, Georgios D. ; Lopez‐Roques, Céline ; Bouchez, Olivier ; Zahm, Margot ; Besnard, Guillaume ; Bellafiore, Stéphane</creatorcontrib><description>Discovered in the 1960s, Meloidogyne graminicola is a root‐knot nematode species considered as a major threat to rice production. Yet, its origin, genomic structure, and intraspecific diversity are poorly understood. So far, such studies have been limited by the unavailability of a sufficiently complete and well‐assembled genome. In this study, using a combination of Oxford Nanopore Technologies and Illumina sequencing data, we generated a highly contiguous reference genome (283 scaffolds with an N50 length of 294 kb, totaling 41.5 Mb). The completeness scores of our assembly are among the highest currently published for Meloidogyne genomes. We predicted 10,284 protein‐coding genes spanning 75.5% of the genome. Among them, 67 are identified as possibly originating from horizontal gene transfers (mostly from bacteria), which supposedly contribute to nematode infection, nutrient processing, and plant defense manipulation. Besides, we detected 575 canonical transposable elements (TEs) belonging to seven orders and spanning 2.61% of the genome. These TEs might promote genomic plasticity putatively related to the evolution of M. graminicola parasitism. This high‐quality genome assembly constitutes a major improvement regarding previously available versions and represents a valuable molecular resource for future phylogenomic studies of Meloidogyne species. In particular, this will foster comparative genomic studies to trace back the evolutionary history of M. graminicola and its closest relatives. The genome of the rice root‐knot nematode (Meloidogyne graminicola) was assembled by combining short and long sequencing reads. Genes and transposable elements were annotated and then analyzed, revealing that lateral gene transfers from bacteria may have greatly contributed to the evolution of parasitism. This genome draft will foster comparative genomic studies to trace back the evolutionary history of M. graminicola and its closest relatives.</description><identifier>ISSN: 2045-7758</identifier><identifier>EISSN: 2045-7758</identifier><identifier>DOI: 10.1002/ece3.6680</identifier><identifier>PMID: 33144944</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Agricultural production ; Assembly ; Bacteria ; cereals ; Crop production ; Deoxyribonucleic acid ; DNA ; Environmental Sciences ; Evolution ; Evolutionary genetics ; Fungi ; Genes ; Genetic engineering ; Genomes ; Genomics ; horizontal gene transfer ; Life Sciences ; Meloidogyne ; Meloidogyne graminicola ; Mitochondrial DNA ; Nematodes ; Original Research ; Parasitism ; Pathogens ; pest ; Phenols ; Phylogenetics ; Porosity ; Protocol ; reference genome ; Ribosomal DNA ; Rice ; root‐knot nematode ; transposable element</subject><ispartof>Ecology and evolution, 2020-10, Vol.10 (20), p.11006-11021</ispartof><rights>2020 The Authors. Ecology and Evolution published by John Wiley &amp; Sons Ltd</rights><rights>2020 The Authors. Ecology and Evolution published by John Wiley &amp; Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6370-66b34cf6f0a6beef7535456c726759bdbe4f08fd4ba08e75db234325790035e73</citedby><cites>FETCH-LOGICAL-c6370-66b34cf6f0a6beef7535456c726759bdbe4f08fd4ba08e75db234325790035e73</cites><orcidid>0000-0001-8387-2266 ; 0000-0003-3406-3715 ; 0000-0001-7126-5477 ; 0000-0002-4394-0866 ; 0000-0003-4146-5608 ; 0000-0003-2275-6012 ; 0000-0003-2173-0937 ; 0000-0002-6379-9070 ; 0000-0002-7255-0058 ; 0000-0001-8632-0109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2455072067/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2455072067?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11542,25732,27903,27904,36991,36992,44569,46030,46454,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33144944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02988764$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Phan, Ngan Thi</creatorcontrib><creatorcontrib>Orjuela, Julie</creatorcontrib><creatorcontrib>Danchin, Etienne G. J.</creatorcontrib><creatorcontrib>Klopp, Christophe</creatorcontrib><creatorcontrib>Perfus‐Barbeoch, Laetitia</creatorcontrib><creatorcontrib>Kozlowski, Djampa K.</creatorcontrib><creatorcontrib>Koutsovoulos, Georgios D.</creatorcontrib><creatorcontrib>Lopez‐Roques, Céline</creatorcontrib><creatorcontrib>Bouchez, Olivier</creatorcontrib><creatorcontrib>Zahm, Margot</creatorcontrib><creatorcontrib>Besnard, Guillaume</creatorcontrib><creatorcontrib>Bellafiore, Stéphane</creatorcontrib><title>Genome structure and content of the rice root‐knot nematode (Meloidogyne graminicola)</title><title>Ecology and evolution</title><addtitle>Ecol Evol</addtitle><description>Discovered in the 1960s, Meloidogyne graminicola is a root‐knot nematode species considered as a major threat to rice production. Yet, its origin, genomic structure, and intraspecific diversity are poorly understood. So far, such studies have been limited by the unavailability of a sufficiently complete and well‐assembled genome. In this study, using a combination of Oxford Nanopore Technologies and Illumina sequencing data, we generated a highly contiguous reference genome (283 scaffolds with an N50 length of 294 kb, totaling 41.5 Mb). The completeness scores of our assembly are among the highest currently published for Meloidogyne genomes. We predicted 10,284 protein‐coding genes spanning 75.5% of the genome. Among them, 67 are identified as possibly originating from horizontal gene transfers (mostly from bacteria), which supposedly contribute to nematode infection, nutrient processing, and plant defense manipulation. Besides, we detected 575 canonical transposable elements (TEs) belonging to seven orders and spanning 2.61% of the genome. These TEs might promote genomic plasticity putatively related to the evolution of M. graminicola parasitism. This high‐quality genome assembly constitutes a major improvement regarding previously available versions and represents a valuable molecular resource for future phylogenomic studies of Meloidogyne species. In particular, this will foster comparative genomic studies to trace back the evolutionary history of M. graminicola and its closest relatives. The genome of the rice root‐knot nematode (Meloidogyne graminicola) was assembled by combining short and long sequencing reads. Genes and transposable elements were annotated and then analyzed, revealing that lateral gene transfers from bacteria may have greatly contributed to the evolution of parasitism. This genome draft will foster comparative genomic studies to trace back the evolutionary history of M. graminicola and its closest relatives.</description><subject>Agricultural production</subject><subject>Assembly</subject><subject>Bacteria</subject><subject>cereals</subject><subject>Crop production</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Environmental Sciences</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Fungi</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Genomics</subject><subject>horizontal gene transfer</subject><subject>Life Sciences</subject><subject>Meloidogyne</subject><subject>Meloidogyne graminicola</subject><subject>Mitochondrial DNA</subject><subject>Nematodes</subject><subject>Original Research</subject><subject>Parasitism</subject><subject>Pathogens</subject><subject>pest</subject><subject>Phenols</subject><subject>Phylogenetics</subject><subject>Porosity</subject><subject>Protocol</subject><subject>reference genome</subject><subject>Ribosomal DNA</subject><subject>Rice</subject><subject>root‐knot nematode</subject><subject>transposable element</subject><issn>2045-7758</issn><issn>2045-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1O3DAQx6OqVUGUQ1-gitQLHBb87eRSCa2WD2lRL616tBx7suttYlPHodpbH4Fn5EnwskABqfVhbI3__s1o_C-KjxgdYYTIMRigR0JU6E2xSxDjEyl59fbZeafYH4YVyksgwpB8X-xQihmrGdstfpyBDz2UQ4qjSWOEUntbmuAT-FSGtkxLKKMzOYSQbv_c_PQhlR56nYKF8uASuuBsWKw9lIuoe-edCZ0-_FC8a3U3wP7Dvld8P519m55P5l_PLqYn84kRVKKJEA1lphUt0qIBaCWnnHFhJBGS141tgLWoai1rNKpActsQyijhskaIcpB0r7jYcm3QK3UVXa_jWgXt1H0ixIXSMTnTgdISM60FzrUkMzpHYgnn0hibaWAy68uWdTU2PViTJxB19wL68sa7pVqEa5VbpVjWGXC4BSxfPTs_matNDpG6qqRg1zhrDx6KxfBrhCGp3g0Guk57COOgCONS1JghnqWfX0lXYYw-j1URgWuef7X-v4pxjiRBQv5t0cQwDBHapz4xUhs_qY2f1MZPWfvp-TyelI_uyYLjreC362D9b5KaTWf0HnkHZUzTFg</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Phan, Ngan Thi</creator><creator>Orjuela, Julie</creator><creator>Danchin, Etienne G. J.</creator><creator>Klopp, Christophe</creator><creator>Perfus‐Barbeoch, Laetitia</creator><creator>Kozlowski, Djampa K.</creator><creator>Koutsovoulos, Georgios D.</creator><creator>Lopez‐Roques, Céline</creator><creator>Bouchez, Olivier</creator><creator>Zahm, Margot</creator><creator>Besnard, Guillaume</creator><creator>Bellafiore, Stéphane</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Open Access</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8387-2266</orcidid><orcidid>https://orcid.org/0000-0003-3406-3715</orcidid><orcidid>https://orcid.org/0000-0001-7126-5477</orcidid><orcidid>https://orcid.org/0000-0002-4394-0866</orcidid><orcidid>https://orcid.org/0000-0003-4146-5608</orcidid><orcidid>https://orcid.org/0000-0003-2275-6012</orcidid><orcidid>https://orcid.org/0000-0003-2173-0937</orcidid><orcidid>https://orcid.org/0000-0002-6379-9070</orcidid><orcidid>https://orcid.org/0000-0002-7255-0058</orcidid><orcidid>https://orcid.org/0000-0001-8632-0109</orcidid></search><sort><creationdate>202010</creationdate><title>Genome structure and content of the rice root‐knot nematode (Meloidogyne graminicola)</title><author>Phan, Ngan Thi ; Orjuela, Julie ; Danchin, Etienne G. J. ; Klopp, Christophe ; Perfus‐Barbeoch, Laetitia ; Kozlowski, Djampa K. ; Koutsovoulos, Georgios D. ; Lopez‐Roques, Céline ; Bouchez, Olivier ; Zahm, Margot ; Besnard, Guillaume ; Bellafiore, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6370-66b34cf6f0a6beef7535456c726759bdbe4f08fd4ba08e75db234325790035e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural production</topic><topic>Assembly</topic><topic>Bacteria</topic><topic>cereals</topic><topic>Crop production</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Environmental Sciences</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Fungi</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Genomics</topic><topic>horizontal gene transfer</topic><topic>Life Sciences</topic><topic>Meloidogyne</topic><topic>Meloidogyne graminicola</topic><topic>Mitochondrial DNA</topic><topic>Nematodes</topic><topic>Original Research</topic><topic>Parasitism</topic><topic>Pathogens</topic><topic>pest</topic><topic>Phenols</topic><topic>Phylogenetics</topic><topic>Porosity</topic><topic>Protocol</topic><topic>reference genome</topic><topic>Ribosomal DNA</topic><topic>Rice</topic><topic>root‐knot nematode</topic><topic>transposable element</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan, Ngan Thi</creatorcontrib><creatorcontrib>Orjuela, Julie</creatorcontrib><creatorcontrib>Danchin, Etienne G. J.</creatorcontrib><creatorcontrib>Klopp, Christophe</creatorcontrib><creatorcontrib>Perfus‐Barbeoch, Laetitia</creatorcontrib><creatorcontrib>Kozlowski, Djampa K.</creatorcontrib><creatorcontrib>Koutsovoulos, Georgios D.</creatorcontrib><creatorcontrib>Lopez‐Roques, Céline</creatorcontrib><creatorcontrib>Bouchez, Olivier</creatorcontrib><creatorcontrib>Zahm, Margot</creatorcontrib><creatorcontrib>Besnard, Guillaume</creatorcontrib><creatorcontrib>Bellafiore, Stéphane</creatorcontrib><collection>Wiley Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phan, Ngan Thi</au><au>Orjuela, Julie</au><au>Danchin, Etienne G. J.</au><au>Klopp, Christophe</au><au>Perfus‐Barbeoch, Laetitia</au><au>Kozlowski, Djampa K.</au><au>Koutsovoulos, Georgios D.</au><au>Lopez‐Roques, Céline</au><au>Bouchez, Olivier</au><au>Zahm, Margot</au><au>Besnard, Guillaume</au><au>Bellafiore, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome structure and content of the rice root‐knot nematode (Meloidogyne graminicola)</atitle><jtitle>Ecology and evolution</jtitle><addtitle>Ecol Evol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>10</volume><issue>20</issue><spage>11006</spage><epage>11021</epage><pages>11006-11021</pages><issn>2045-7758</issn><eissn>2045-7758</eissn><abstract>Discovered in the 1960s, Meloidogyne graminicola is a root‐knot nematode species considered as a major threat to rice production. Yet, its origin, genomic structure, and intraspecific diversity are poorly understood. So far, such studies have been limited by the unavailability of a sufficiently complete and well‐assembled genome. In this study, using a combination of Oxford Nanopore Technologies and Illumina sequencing data, we generated a highly contiguous reference genome (283 scaffolds with an N50 length of 294 kb, totaling 41.5 Mb). The completeness scores of our assembly are among the highest currently published for Meloidogyne genomes. We predicted 10,284 protein‐coding genes spanning 75.5% of the genome. Among them, 67 are identified as possibly originating from horizontal gene transfers (mostly from bacteria), which supposedly contribute to nematode infection, nutrient processing, and plant defense manipulation. Besides, we detected 575 canonical transposable elements (TEs) belonging to seven orders and spanning 2.61% of the genome. These TEs might promote genomic plasticity putatively related to the evolution of M. graminicola parasitism. This high‐quality genome assembly constitutes a major improvement regarding previously available versions and represents a valuable molecular resource for future phylogenomic studies of Meloidogyne species. In particular, this will foster comparative genomic studies to trace back the evolutionary history of M. graminicola and its closest relatives. The genome of the rice root‐knot nematode (Meloidogyne graminicola) was assembled by combining short and long sequencing reads. Genes and transposable elements were annotated and then analyzed, revealing that lateral gene transfers from bacteria may have greatly contributed to the evolution of parasitism. This genome draft will foster comparative genomic studies to trace back the evolutionary history of M. graminicola and its closest relatives.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33144944</pmid><doi>10.1002/ece3.6680</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8387-2266</orcidid><orcidid>https://orcid.org/0000-0003-3406-3715</orcidid><orcidid>https://orcid.org/0000-0001-7126-5477</orcidid><orcidid>https://orcid.org/0000-0002-4394-0866</orcidid><orcidid>https://orcid.org/0000-0003-4146-5608</orcidid><orcidid>https://orcid.org/0000-0003-2275-6012</orcidid><orcidid>https://orcid.org/0000-0003-2173-0937</orcidid><orcidid>https://orcid.org/0000-0002-6379-9070</orcidid><orcidid>https://orcid.org/0000-0002-7255-0058</orcidid><orcidid>https://orcid.org/0000-0001-8632-0109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-7758
ispartof Ecology and evolution, 2020-10, Vol.10 (20), p.11006-11021
issn 2045-7758
2045-7758
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a714aa61f0a74ca0a72d2557ccd900ec
source Publicly Available Content Database; Wiley Open Access; PubMed Central
subjects Agricultural production
Assembly
Bacteria
cereals
Crop production
Deoxyribonucleic acid
DNA
Environmental Sciences
Evolution
Evolutionary genetics
Fungi
Genes
Genetic engineering
Genomes
Genomics
horizontal gene transfer
Life Sciences
Meloidogyne
Meloidogyne graminicola
Mitochondrial DNA
Nematodes
Original Research
Parasitism
Pathogens
pest
Phenols
Phylogenetics
Porosity
Protocol
reference genome
Ribosomal DNA
Rice
root‐knot nematode
transposable element
title Genome structure and content of the rice root‐knot nematode (Meloidogyne graminicola)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20structure%20and%20content%20of%20the%20rice%20root%E2%80%90knot%20nematode%20(Meloidogyne%20graminicola)&rft.jtitle=Ecology%20and%20evolution&rft.au=Phan,%20Ngan%20Thi&rft.date=2020-10&rft.volume=10&rft.issue=20&rft.spage=11006&rft.epage=11021&rft.pages=11006-11021&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.6680&rft_dat=%3Cproquest_doaj_%3E2455072067%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6370-66b34cf6f0a6beef7535456c726759bdbe4f08fd4ba08e75db234325790035e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455072067&rft_id=info:pmid/33144944&rfr_iscdi=true