Loading…

Reproducibility of SNV-calling in multiple sequencing runs from single tumors

We examined 55 technical sequencing replicates of Glioblastoma multiforme (GBM) tumors from The Cancer Genome Atlas (TCGA) to ascertain the degree of repeatability in calling single-nucleotide variants (SNVs). We used the same mutation-calling pipeline on all pairs of samples, and we measured the ex...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ (San Francisco, CA) CA), 2016-01, Vol.4, p.e1508-e1508, Article e1508
Main Authors: Derryberry, Dakota Z, Cowperthwaite, Matthew C, Wilke, Claus O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c570t-5faa9a2f6610f6e292b42a3c744957c7ffe27d959dee1480686312db1cf0b8473
cites cdi_FETCH-LOGICAL-c570t-5faa9a2f6610f6e292b42a3c744957c7ffe27d959dee1480686312db1cf0b8473
container_end_page e1508
container_issue
container_start_page e1508
container_title PeerJ (San Francisco, CA)
container_volume 4
creator Derryberry, Dakota Z
Cowperthwaite, Matthew C
Wilke, Claus O
description We examined 55 technical sequencing replicates of Glioblastoma multiforme (GBM) tumors from The Cancer Genome Atlas (TCGA) to ascertain the degree of repeatability in calling single-nucleotide variants (SNVs). We used the same mutation-calling pipeline on all pairs of samples, and we measured the extent of the overlap between two replicates; that is, how many specific point mutations were found in both replicates. We further tested whether additional filtering increased or decreased the size of the overlap. We found that about half of the putative mutations identified in one sequencing run of a given sample were also identified in the second, and that this percentage remained steady throughout orders of magnitude of variation in the total number of mutations identified (from 23 to 10,966). We further found that using filtering after SNV-calling removed the overlap completely. We concluded that there is variation in the frequency of mutations in GBMs, and that while some filtering approaches preferentially removed putative mutations found in only one replicate, others removed a large fraction of putative mutations found in both.
doi_str_mv 10.7717/peerj.1508
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a725e0b2d8ab4ad39451b97a436f87ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543413963</galeid><doaj_id>oai_doaj_org_article_a725e0b2d8ab4ad39451b97a436f87ab</doaj_id><sourcerecordid>A543413963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-5faa9a2f6610f6e292b42a3c744957c7ffe27d959dee1480686312db1cf0b8473</originalsourceid><addsrcrecordid>eNptkmtrFDEUhgdRbKn94g-QAUFEmDXJ5DL5IpTipVAVvH0NmczJbpZMsiYzQv-9mW6tu2ISSHLOc96Ql1NVTzFaCYHF6x1A2q4wQ92D6pRgLpquZfLhwfmkOs95i8roCEdd-7g6IbxjrKzT6uMX2KU4zMb1zrvppo62_vrpR2O09y6saxfqcfaT23moM_ycIZglnOaQa5viWOdyLblpHmPKT6pHVvsM53f7WfX93dtvlx-a68_vry4vrhvDBJoaZrWWmljOMbIciCQ9Jbo1glLJhBHWAhGDZHIAwLRDvOMtJkOPjUV9R0V7Vl3tdYeot2qX3KjTjYraqdtATGul0-SMB6UFYYB6MnS6p3poJWW4l0LTlttO6L5ovdlr7eZ-hMFAmJL2R6LHmeA2ah1_KSooRpwWgZd3AikWg_KkRpcNeK8DxDkrLApECaUL-vwfdBvnFIpVCkuGOZNCkL_UWpcPuGBjedcsouqCFSncSt4WavUfqswBRmdiAOtK_KjgxUHBBrSfNjn6eXIx5GPw1R40KeacwN6bgZFamk7dNp1amq7Azw7tu0f_tFj7GyT10Lg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951659772</pqid></control><display><type>article</type><title>Reproducibility of SNV-calling in multiple sequencing runs from single tumors</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><creator>Derryberry, Dakota Z ; Cowperthwaite, Matthew C ; Wilke, Claus O</creator><creatorcontrib>Derryberry, Dakota Z ; Cowperthwaite, Matthew C ; Wilke, Claus O</creatorcontrib><description>We examined 55 technical sequencing replicates of Glioblastoma multiforme (GBM) tumors from The Cancer Genome Atlas (TCGA) to ascertain the degree of repeatability in calling single-nucleotide variants (SNVs). We used the same mutation-calling pipeline on all pairs of samples, and we measured the extent of the overlap between two replicates; that is, how many specific point mutations were found in both replicates. We further tested whether additional filtering increased or decreased the size of the overlap. We found that about half of the putative mutations identified in one sequencing run of a given sample were also identified in the second, and that this percentage remained steady throughout orders of magnitude of variation in the total number of mutations identified (from 23 to 10,966). We further found that using filtering after SNV-calling removed the overlap completely. We concluded that there is variation in the frequency of mutations in GBMs, and that while some filtering approaches preferentially removed putative mutations found in only one replicate, others removed a large fraction of putative mutations found in both.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.1508</identifier><identifier>PMID: 26855855</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Benchmarking ; Bioinformatics ; Biology ; Brain cancer ; Cancer ; Cancer genetics ; Computational Biology ; Deoxyribonucleic acid ; DNA ; Exome sequencing ; Gene mutation ; Genetic aspects ; Genetics ; Genomes ; Genomics ; Glioblastoma ; Medical prognosis ; Mutation ; Oncology ; Reproducibility ; SNV-calling ; TCGA ; Tumors</subject><ispartof>PeerJ (San Francisco, CA), 2016-01, Vol.4, p.e1508-e1508, Article e1508</ispartof><rights>COPYRIGHT 2016 PeerJ. Ltd.</rights><rights>2016 Derryberry et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Derryberry et al. 2016 Derryberry et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-5faa9a2f6610f6e292b42a3c744957c7ffe27d959dee1480686312db1cf0b8473</citedby><cites>FETCH-LOGICAL-c570t-5faa9a2f6610f6e292b42a3c744957c7ffe27d959dee1480686312db1cf0b8473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1951659772/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1951659772?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26855855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Derryberry, Dakota Z</creatorcontrib><creatorcontrib>Cowperthwaite, Matthew C</creatorcontrib><creatorcontrib>Wilke, Claus O</creatorcontrib><title>Reproducibility of SNV-calling in multiple sequencing runs from single tumors</title><title>PeerJ (San Francisco, CA)</title><addtitle>PeerJ</addtitle><description>We examined 55 technical sequencing replicates of Glioblastoma multiforme (GBM) tumors from The Cancer Genome Atlas (TCGA) to ascertain the degree of repeatability in calling single-nucleotide variants (SNVs). We used the same mutation-calling pipeline on all pairs of samples, and we measured the extent of the overlap between two replicates; that is, how many specific point mutations were found in both replicates. We further tested whether additional filtering increased or decreased the size of the overlap. We found that about half of the putative mutations identified in one sequencing run of a given sample were also identified in the second, and that this percentage remained steady throughout orders of magnitude of variation in the total number of mutations identified (from 23 to 10,966). We further found that using filtering after SNV-calling removed the overlap completely. We concluded that there is variation in the frequency of mutations in GBMs, and that while some filtering approaches preferentially removed putative mutations found in only one replicate, others removed a large fraction of putative mutations found in both.</description><subject>Benchmarking</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Cancer genetics</subject><subject>Computational Biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Exome sequencing</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glioblastoma</subject><subject>Medical prognosis</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Reproducibility</subject><subject>SNV-calling</subject><subject>TCGA</subject><subject>Tumors</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkmtrFDEUhgdRbKn94g-QAUFEmDXJ5DL5IpTipVAVvH0NmczJbpZMsiYzQv-9mW6tu2ISSHLOc96Ql1NVTzFaCYHF6x1A2q4wQ92D6pRgLpquZfLhwfmkOs95i8roCEdd-7g6IbxjrKzT6uMX2KU4zMb1zrvppo62_vrpR2O09y6saxfqcfaT23moM_ycIZglnOaQa5viWOdyLblpHmPKT6pHVvsM53f7WfX93dtvlx-a68_vry4vrhvDBJoaZrWWmljOMbIciCQ9Jbo1glLJhBHWAhGDZHIAwLRDvOMtJkOPjUV9R0V7Vl3tdYeot2qX3KjTjYraqdtATGul0-SMB6UFYYB6MnS6p3poJWW4l0LTlttO6L5ovdlr7eZ-hMFAmJL2R6LHmeA2ah1_KSooRpwWgZd3AikWg_KkRpcNeK8DxDkrLApECaUL-vwfdBvnFIpVCkuGOZNCkL_UWpcPuGBjedcsouqCFSncSt4WavUfqswBRmdiAOtK_KjgxUHBBrSfNjn6eXIx5GPw1R40KeacwN6bgZFamk7dNp1amq7Azw7tu0f_tFj7GyT10Lg</recordid><startdate>20160104</startdate><enddate>20160104</enddate><creator>Derryberry, Dakota Z</creator><creator>Cowperthwaite, Matthew C</creator><creator>Wilke, Claus O</creator><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160104</creationdate><title>Reproducibility of SNV-calling in multiple sequencing runs from single tumors</title><author>Derryberry, Dakota Z ; Cowperthwaite, Matthew C ; Wilke, Claus O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-5faa9a2f6610f6e292b42a3c744957c7ffe27d959dee1480686312db1cf0b8473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Benchmarking</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Cancer genetics</topic><topic>Computational Biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Exome sequencing</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glioblastoma</topic><topic>Medical prognosis</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Reproducibility</topic><topic>SNV-calling</topic><topic>TCGA</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derryberry, Dakota Z</creatorcontrib><creatorcontrib>Cowperthwaite, Matthew C</creatorcontrib><creatorcontrib>Wilke, Claus O</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derryberry, Dakota Z</au><au>Cowperthwaite, Matthew C</au><au>Wilke, Claus O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reproducibility of SNV-calling in multiple sequencing runs from single tumors</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><addtitle>PeerJ</addtitle><date>2016-01-04</date><risdate>2016</risdate><volume>4</volume><spage>e1508</spage><epage>e1508</epage><pages>e1508-e1508</pages><artnum>e1508</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>We examined 55 technical sequencing replicates of Glioblastoma multiforme (GBM) tumors from The Cancer Genome Atlas (TCGA) to ascertain the degree of repeatability in calling single-nucleotide variants (SNVs). We used the same mutation-calling pipeline on all pairs of samples, and we measured the extent of the overlap between two replicates; that is, how many specific point mutations were found in both replicates. We further tested whether additional filtering increased or decreased the size of the overlap. We found that about half of the putative mutations identified in one sequencing run of a given sample were also identified in the second, and that this percentage remained steady throughout orders of magnitude of variation in the total number of mutations identified (from 23 to 10,966). We further found that using filtering after SNV-calling removed the overlap completely. We concluded that there is variation in the frequency of mutations in GBMs, and that while some filtering approaches preferentially removed putative mutations found in only one replicate, others removed a large fraction of putative mutations found in both.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>26855855</pmid><doi>10.7717/peerj.1508</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2167-8359
ispartof PeerJ (San Francisco, CA), 2016-01, Vol.4, p.e1508-e1508, Article e1508
issn 2167-8359
2167-8359
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a725e0b2d8ab4ad39451b97a436f87ab
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC)
subjects Benchmarking
Bioinformatics
Biology
Brain cancer
Cancer
Cancer genetics
Computational Biology
Deoxyribonucleic acid
DNA
Exome sequencing
Gene mutation
Genetic aspects
Genetics
Genomes
Genomics
Glioblastoma
Medical prognosis
Mutation
Oncology
Reproducibility
SNV-calling
TCGA
Tumors
title Reproducibility of SNV-calling in multiple sequencing runs from single tumors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reproducibility%20of%20SNV-calling%20in%20multiple%20sequencing%20runs%20from%20single%20tumors&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Derryberry,%20Dakota%20Z&rft.date=2016-01-04&rft.volume=4&rft.spage=e1508&rft.epage=e1508&rft.pages=e1508-e1508&rft.artnum=e1508&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.1508&rft_dat=%3Cgale_doaj_%3EA543413963%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-5faa9a2f6610f6e292b42a3c744957c7ffe27d959dee1480686312db1cf0b8473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1951659772&rft_id=info:pmid/26855855&rft_galeid=A543413963&rfr_iscdi=true