Loading…

Few‐shot learning for satellite characterisation from synthetic inverse synthetic aperture radar images

Space situational awareness systems primarily focus on detecting and tracking space objects, providing crucial positional data. However, understanding the complex space domain requires characterising satellites, often involving estimation of bus and solar panel sizes. While inverse synthetic apertur...

Full description

Saved in:
Bibliographic Details
Published in:IET radar, sonar & navigation sonar & navigation, 2024-04, Vol.18 (4), p.649-656
Main Authors: Heslinga, Friso G., Uysal, Faruk, Rooij, Sabina B., Berberich, Sven, Caro Cuenca, Miguel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4016-fed302d83fe46697ae436f4585a8bf8141eb7afaa8b083da5c81b9ceffc149123
container_end_page 656
container_issue 4
container_start_page 649
container_title IET radar, sonar & navigation
container_volume 18
creator Heslinga, Friso G.
Uysal, Faruk
Rooij, Sabina B.
Berberich, Sven
Caro Cuenca, Miguel
description Space situational awareness systems primarily focus on detecting and tracking space objects, providing crucial positional data. However, understanding the complex space domain requires characterising satellites, often involving estimation of bus and solar panel sizes. While inverse synthetic aperture radar allows satellite visualisation, developing deep learning models for substructure segmentation in inverse synthetic aperture radar images is challenging due to the high costs and hardware requirements. The authors present a framework addressing the scarcity of inverse synthetic aperture radar data through synthetic training data. The authors approach utilises a few‐shot domain adaptation technique, leveraging thousands of rapidly simulated low‐fidelity inverse synthetic aperture radar images and a small set of inverse synthetic aperture radar images from the target domain. The authors validate their framework by simulating a real‐case scenario, fine‐tuning a deep learning‐based segmentation model using four inverse synthetic aperture radar images generated through the backprojection algorithm from simulated raw radar data (simulated at the analogue‐to‐digital converter level) as the target domain. The authors results demonstrate the effectiveness of the proposed framework, significantly improving inverse synthetic aperture radar image segmentation across diverse domains. This enhancement enables accurate characterisation of satellite bus and solar panel sizes as well as their orientation, even when the images are sourced from different domains. Inverse synthetic aperture radar (ISAR) allows for visualisation of satellites, but development of deep learning‐based segmentation models can be challenging because of the limited amount of real ISAR data. An image analysis framework based on simulated data and few‐shot learning for domain‐adaptation is proposed. We obtain segmentation results that enable characterisation of the satellite bus and solar panel size and their orientation.
doi_str_mv 10.1049/rsn2.12516
format article
fullrecord <record><control><sourceid>wiley_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a75f5ff91e1e49dfb24728cf845e2e1a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a75f5ff91e1e49dfb24728cf845e2e1a</doaj_id><sourcerecordid>RSN212516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4016-fed302d83fe46697ae436f4585a8bf8141eb7afaa8b083da5c81b9ceffc149123</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxoMoWKsXn2DPQmtms5tsjlKsCkXBP-dlupltV2JSZqOlNx_BZ_RJjK2IJ08z8_HNb4YvSU4hHUOqynOOjRyD1JDvJQMoNIxMUcr9396ow-Qoxuc01TpX5SAJU1p_vn_EZduJmpCb0CyEb1lE7KiuQ0fCLZHRdcSh10LbCM_ti4ibpltSF5wIzRtxpD8Kroi7VybBWCGL8IILisfJgcc60slPHSZP08vHyfVodnd1M7mYjZxKIR95qrJUVibzpPK8LJBUlnuljUYz9wYU0LxAj_2UmqxC7QzMS0feO1AlyGyY3Oy4VYvPdsX9dd7YFoPdCi0vLHL_ZU0WC-219yUQkCorP5eqkMZ5ozRJAuxZZzuW4zZGJv_Lg9R-B26_A7fbwHsz7MzrUNPmH6e9f7iVu50vxtWHeQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Few‐shot learning for satellite characterisation from synthetic inverse synthetic aperture radar images</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>IET Digital Library Journals</source><creator>Heslinga, Friso G. ; Uysal, Faruk ; Rooij, Sabina B. ; Berberich, Sven ; Caro Cuenca, Miguel</creator><creatorcontrib>Heslinga, Friso G. ; Uysal, Faruk ; Rooij, Sabina B. ; Berberich, Sven ; Caro Cuenca, Miguel</creatorcontrib><description>Space situational awareness systems primarily focus on detecting and tracking space objects, providing crucial positional data. However, understanding the complex space domain requires characterising satellites, often involving estimation of bus and solar panel sizes. While inverse synthetic aperture radar allows satellite visualisation, developing deep learning models for substructure segmentation in inverse synthetic aperture radar images is challenging due to the high costs and hardware requirements. The authors present a framework addressing the scarcity of inverse synthetic aperture radar data through synthetic training data. The authors approach utilises a few‐shot domain adaptation technique, leveraging thousands of rapidly simulated low‐fidelity inverse synthetic aperture radar images and a small set of inverse synthetic aperture radar images from the target domain. The authors validate their framework by simulating a real‐case scenario, fine‐tuning a deep learning‐based segmentation model using four inverse synthetic aperture radar images generated through the backprojection algorithm from simulated raw radar data (simulated at the analogue‐to‐digital converter level) as the target domain. The authors results demonstrate the effectiveness of the proposed framework, significantly improving inverse synthetic aperture radar image segmentation across diverse domains. This enhancement enables accurate characterisation of satellite bus and solar panel sizes as well as their orientation, even when the images are sourced from different domains. Inverse synthetic aperture radar (ISAR) allows for visualisation of satellites, but development of deep learning‐based segmentation models can be challenging because of the limited amount of real ISAR data. An image analysis framework based on simulated data and few‐shot learning for domain‐adaptation is proposed. We obtain segmentation results that enable characterisation of the satellite bus and solar panel size and their orientation.</description><identifier>ISSN: 1751-8784</identifier><identifier>EISSN: 1751-8792</identifier><identifier>DOI: 10.1049/rsn2.12516</identifier><language>eng</language><publisher>Wiley</publisher><subject>artificial intelligence ; image segmentation ; inverse synthetic aperture radar (ISAR) ; satellite tracking</subject><ispartof>IET radar, sonar &amp; navigation, 2024-04, Vol.18 (4), p.649-656</ispartof><rights>2024 TNO. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4016-fed302d83fe46697ae436f4585a8bf8141eb7afaa8b083da5c81b9ceffc149123</cites><orcidid>0009-0008-5058-5103 ; 0009-0001-0948-8175 ; 0000-0002-4518-5649 ; 0000-0002-8383-307X ; 0009-0006-9327-0043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Frsn2.12516$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Frsn2.12516$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Heslinga, Friso G.</creatorcontrib><creatorcontrib>Uysal, Faruk</creatorcontrib><creatorcontrib>Rooij, Sabina B.</creatorcontrib><creatorcontrib>Berberich, Sven</creatorcontrib><creatorcontrib>Caro Cuenca, Miguel</creatorcontrib><title>Few‐shot learning for satellite characterisation from synthetic inverse synthetic aperture radar images</title><title>IET radar, sonar &amp; navigation</title><description>Space situational awareness systems primarily focus on detecting and tracking space objects, providing crucial positional data. However, understanding the complex space domain requires characterising satellites, often involving estimation of bus and solar panel sizes. While inverse synthetic aperture radar allows satellite visualisation, developing deep learning models for substructure segmentation in inverse synthetic aperture radar images is challenging due to the high costs and hardware requirements. The authors present a framework addressing the scarcity of inverse synthetic aperture radar data through synthetic training data. The authors approach utilises a few‐shot domain adaptation technique, leveraging thousands of rapidly simulated low‐fidelity inverse synthetic aperture radar images and a small set of inverse synthetic aperture radar images from the target domain. The authors validate their framework by simulating a real‐case scenario, fine‐tuning a deep learning‐based segmentation model using four inverse synthetic aperture radar images generated through the backprojection algorithm from simulated raw radar data (simulated at the analogue‐to‐digital converter level) as the target domain. The authors results demonstrate the effectiveness of the proposed framework, significantly improving inverse synthetic aperture radar image segmentation across diverse domains. This enhancement enables accurate characterisation of satellite bus and solar panel sizes as well as their orientation, even when the images are sourced from different domains. Inverse synthetic aperture radar (ISAR) allows for visualisation of satellites, but development of deep learning‐based segmentation models can be challenging because of the limited amount of real ISAR data. An image analysis framework based on simulated data and few‐shot learning for domain‐adaptation is proposed. We obtain segmentation results that enable characterisation of the satellite bus and solar panel size and their orientation.</description><subject>artificial intelligence</subject><subject>image segmentation</subject><subject>inverse synthetic aperture radar (ISAR)</subject><subject>satellite tracking</subject><issn>1751-8784</issn><issn>1751-8792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kM9Kw0AQxoMoWKsXn2DPQmtms5tsjlKsCkXBP-dlupltV2JSZqOlNx_BZ_RJjK2IJ08z8_HNb4YvSU4hHUOqynOOjRyD1JDvJQMoNIxMUcr9396ow-Qoxuc01TpX5SAJU1p_vn_EZduJmpCb0CyEb1lE7KiuQ0fCLZHRdcSh10LbCM_ti4ibpltSF5wIzRtxpD8Kroi7VybBWCGL8IILisfJgcc60slPHSZP08vHyfVodnd1M7mYjZxKIR95qrJUVibzpPK8LJBUlnuljUYz9wYU0LxAj_2UmqxC7QzMS0feO1AlyGyY3Oy4VYvPdsX9dd7YFoPdCi0vLHL_ZU0WC-219yUQkCorP5eqkMZ5ozRJAuxZZzuW4zZGJv_Lg9R-B26_A7fbwHsz7MzrUNPmH6e9f7iVu50vxtWHeQ</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Heslinga, Friso G.</creator><creator>Uysal, Faruk</creator><creator>Rooij, Sabina B.</creator><creator>Berberich, Sven</creator><creator>Caro Cuenca, Miguel</creator><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-5058-5103</orcidid><orcidid>https://orcid.org/0009-0001-0948-8175</orcidid><orcidid>https://orcid.org/0000-0002-4518-5649</orcidid><orcidid>https://orcid.org/0000-0002-8383-307X</orcidid><orcidid>https://orcid.org/0009-0006-9327-0043</orcidid></search><sort><creationdate>202404</creationdate><title>Few‐shot learning for satellite characterisation from synthetic inverse synthetic aperture radar images</title><author>Heslinga, Friso G. ; Uysal, Faruk ; Rooij, Sabina B. ; Berberich, Sven ; Caro Cuenca, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4016-fed302d83fe46697ae436f4585a8bf8141eb7afaa8b083da5c81b9ceffc149123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial intelligence</topic><topic>image segmentation</topic><topic>inverse synthetic aperture radar (ISAR)</topic><topic>satellite tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heslinga, Friso G.</creatorcontrib><creatorcontrib>Uysal, Faruk</creatorcontrib><creatorcontrib>Rooij, Sabina B.</creatorcontrib><creatorcontrib>Berberich, Sven</creatorcontrib><creatorcontrib>Caro Cuenca, Miguel</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>IET radar, sonar &amp; navigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heslinga, Friso G.</au><au>Uysal, Faruk</au><au>Rooij, Sabina B.</au><au>Berberich, Sven</au><au>Caro Cuenca, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Few‐shot learning for satellite characterisation from synthetic inverse synthetic aperture radar images</atitle><jtitle>IET radar, sonar &amp; navigation</jtitle><date>2024-04</date><risdate>2024</risdate><volume>18</volume><issue>4</issue><spage>649</spage><epage>656</epage><pages>649-656</pages><issn>1751-8784</issn><eissn>1751-8792</eissn><abstract>Space situational awareness systems primarily focus on detecting and tracking space objects, providing crucial positional data. However, understanding the complex space domain requires characterising satellites, often involving estimation of bus and solar panel sizes. While inverse synthetic aperture radar allows satellite visualisation, developing deep learning models for substructure segmentation in inverse synthetic aperture radar images is challenging due to the high costs and hardware requirements. The authors present a framework addressing the scarcity of inverse synthetic aperture radar data through synthetic training data. The authors approach utilises a few‐shot domain adaptation technique, leveraging thousands of rapidly simulated low‐fidelity inverse synthetic aperture radar images and a small set of inverse synthetic aperture radar images from the target domain. The authors validate their framework by simulating a real‐case scenario, fine‐tuning a deep learning‐based segmentation model using four inverse synthetic aperture radar images generated through the backprojection algorithm from simulated raw radar data (simulated at the analogue‐to‐digital converter level) as the target domain. The authors results demonstrate the effectiveness of the proposed framework, significantly improving inverse synthetic aperture radar image segmentation across diverse domains. This enhancement enables accurate characterisation of satellite bus and solar panel sizes as well as their orientation, even when the images are sourced from different domains. Inverse synthetic aperture radar (ISAR) allows for visualisation of satellites, but development of deep learning‐based segmentation models can be challenging because of the limited amount of real ISAR data. An image analysis framework based on simulated data and few‐shot learning for domain‐adaptation is proposed. We obtain segmentation results that enable characterisation of the satellite bus and solar panel size and their orientation.</abstract><pub>Wiley</pub><doi>10.1049/rsn2.12516</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0008-5058-5103</orcidid><orcidid>https://orcid.org/0009-0001-0948-8175</orcidid><orcidid>https://orcid.org/0000-0002-4518-5649</orcidid><orcidid>https://orcid.org/0000-0002-8383-307X</orcidid><orcidid>https://orcid.org/0009-0006-9327-0043</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8784
ispartof IET radar, sonar & navigation, 2024-04, Vol.18 (4), p.649-656
issn 1751-8784
1751-8792
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a75f5ff91e1e49dfb24728cf845e2e1a
source Open Access: Wiley-Blackwell Open Access Journals; IET Digital Library Journals
subjects artificial intelligence
image segmentation
inverse synthetic aperture radar (ISAR)
satellite tracking
title Few‐shot learning for satellite characterisation from synthetic inverse synthetic aperture radar images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Few%E2%80%90shot%20learning%20for%20satellite%20characterisation%20from%20synthetic%20inverse%20synthetic%20aperture%20radar%20images&rft.jtitle=IET%20radar,%20sonar%20&%20navigation&rft.au=Heslinga,%20Friso%20G.&rft.date=2024-04&rft.volume=18&rft.issue=4&rft.spage=649&rft.epage=656&rft.pages=649-656&rft.issn=1751-8784&rft.eissn=1751-8792&rft_id=info:doi/10.1049/rsn2.12516&rft_dat=%3Cwiley_doaj_%3ERSN212516%3C/wiley_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4016-fed302d83fe46697ae436f4585a8bf8141eb7afaa8b083da5c81b9ceffc149123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true