Loading…
Routine Decontamination of Surfaces Relevant to Working Dogs: Neutralization of Superficial Coronavirus Contamination
Given the increased deployment of working dogs to settings with pathogenic biological agents, a safe, effective, and logistically feasible surface decontamination protocol is essential to protect both the animals and their human handlers. Our group previously found that superficial contamination on...
Saved in:
Published in: | Animals (Basel) 2022-07, Vol.12 (14), p.1823 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given the increased deployment of working dogs to settings with pathogenic biological agents, a safe, effective, and logistically feasible surface decontamination protocol is essential to protect both the animals and their human handlers. Our group previously found that superficial contamination on surfaces relevant to the working dog community, including leashes and toys, could be significantly reduced using a standardized wiping protocol with various cleansing products. To expand upon this work, we analyzed the ability of this protocol to decontaminate surface-deposited bovine coronavirus, which was used as a BSL2 surrogate for SARS-CoV-2. Unsurprisingly, the physical characteristics of a given surface, including porosity and texture, had a significant effect on the ability to recover viable virus remaining on the surface post treatment. After correcting for these differences, however, wiping with 70% isopropyl alcohol (IPA) and 0.5% chlorhexidine performed best, reducing viral titers by >3 log on plastic bumper toys and nylon collars, and by >2 log on rubber toys and tennis balls. Leather leashes and Velcro proved more difficult to decontaminate, but both still showed significant loss of viral contamination following wiping with IPA or chlorhexidine. This work (i) validates the utility of a simple protocol for the neutralization of viruses on several surfaces, (ii) identifies materials that are more difficult to decontaminate, which should, thus, be considered for removal from field use, and (iii) highlights the need for further development of protocols testing porous or textured surfaces. |
---|---|
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani12141823 |