Loading…

Modeling and Identification of an Industrial Robot with a Selective Modal Approach

The stiffness properties of industrial robots are very important for many industrial applications, such as automatic robotic assembly and material removal processes (e.g., machining and deburring). On the one hand, in robotic assembly, joint compliance can be useful for compensating dimensional erro...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-07, Vol.10 (13), p.4619
Main Authors: Bottin, Matteo, Cocuzza, Silvio, Comand, Nicola, Doria, Alberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The stiffness properties of industrial robots are very important for many industrial applications, such as automatic robotic assembly and material removal processes (e.g., machining and deburring). On the one hand, in robotic assembly, joint compliance can be useful for compensating dimensional errors in the parts to be assembled; on the other hand, in material removal processes, a high Cartesian stiffness of the end-effector is required. Moreover, low frequency chatter vibrations can be induced when low-stiffness robots are used, with an impairment in the quality of the machined surface. In this paper, a compliant joint dynamic model of an industrial robot has been developed, in which joint stiffness has been experimentally identified using a modal approach. First, a novel method to select the test configurations has been developed, so that in each configuration the mode of vibration that chiefly involves only one joint is excited. Then, experimental tests are carried out in the selected configurations in order to identify joint stiffness. Finally, the developed dynamic model of the robot is used to predict the variation of the natural frequencies in the workspace.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10134619