Loading…
Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor
To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector machine(LSSVM), the extraction of features and the...
Saved in:
Published in: | International journal of rotating machinery 2024, Vol.2024, p.1-16 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-e2b6a1d8bb9be2ffb6aa09ac615b4623d569aedbb3835300f49a621d844735253 |
container_end_page | 16 |
container_issue | |
container_start_page | 1 |
container_title | International journal of rotating machinery |
container_volume | 2024 |
creator | Ye, Guo Lu, Yanbin Ju, Jinyong Sheng, Lianchao |
description | To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector machine(LSSVM), the extraction of features and the classification of demagnetization faults are completed. Since it is difficult to collect real data sets of demagnetization faults in practice, a two-dimensional finite element simulation model of permanent magnet synchronous motor (PMSM) under uniform demagnetization and partial demagnetization faults is established based on the Maxwell simulation platform. The wavelet packet analysis is used to extract the demagnetization feature of the A-phase current of the PMSM. Based on PCA dimensionality reduction, the dimensionality reduction of fault features is realized. The LSSVM is used to identify the fault and complete the fault classification. The simulation results show that the method has a high classification accuracy rate for demagnetization faults. |
doi_str_mv | 10.1155/2024/6648925 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a7b7af59810d4a11a90807a226ea4236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a7b7af59810d4a11a90807a226ea4236</doaj_id><sourcerecordid>2916947326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e2b6a1d8bb9be2ffb6aa09ac615b4623d569aedbb3835300f49a621d844735253</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhleISpTSGz_AEkdYao8_sj6itIVKjaiAStys2d3ZxFFiF9srVH49TlNx5DQfeuadGb1N81bwj0JofQEc1IUxqrOgXzSnQitoJZfqZc05yNaA-PmqeZ3zlnMA3unThr5RJkzDhsXALmmP60DF_8Hia32N866wS1-bMfvMVlQ2cWRxYisfiC3nUnxYsztKewwUCls9jbPvj2HYpBjiXGdiielNczLhLtP5czxr7q-vfiy_tLdfP98sP922gzS8tAS9QTF2fW97gmmqFXKLgxG6VwbkqI1FGvtedlJLzidlsf40dkotpAYtz5qbo-4Ycesekt9jenQRvXtqxLR2mIofduRw0S9w0rYTfFQoBFre8QUCGEIF0lStd0ethxR_zZSL28Y5hXq-AyuMrSvhQH04UkOKOSea_m0V3B1McQdT3LMpFX9_xDc-jPjb_5_-C_eOi2E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916947326</pqid></control><display><type>article</type><title>Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Ye, Guo ; Lu, Yanbin ; Ju, Jinyong ; Sheng, Lianchao</creator><contributor>Pennacchi, Paolo ; Paolo Pennacchi</contributor><creatorcontrib>Ye, Guo ; Lu, Yanbin ; Ju, Jinyong ; Sheng, Lianchao ; Pennacchi, Paolo ; Paolo Pennacchi</creatorcontrib><description>To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector machine(LSSVM), the extraction of features and the classification of demagnetization faults are completed. Since it is difficult to collect real data sets of demagnetization faults in practice, a two-dimensional finite element simulation model of permanent magnet synchronous motor (PMSM) under uniform demagnetization and partial demagnetization faults is established based on the Maxwell simulation platform. The wavelet packet analysis is used to extract the demagnetization feature of the A-phase current of the PMSM. Based on PCA dimensionality reduction, the dimensionality reduction of fault features is realized. The LSSVM is used to identify the fault and complete the fault classification. The simulation results show that the method has a high classification accuracy rate for demagnetization faults.</description><identifier>ISSN: 1023-621X</identifier><identifier>EISSN: 1542-3034</identifier><identifier>DOI: 10.1155/2024/6648925</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Classification ; Demagnetization ; Fault diagnosis ; Faults ; Finite element analysis ; Finite element method ; Fourier transforms ; Kalman filters ; Magnetic fields ; Neural networks ; Permanent magnets ; Phase current ; Principal components analysis ; Reduction ; Simulation ; Simulation models ; Software ; Spectrum analysis ; Support vector machines ; Synchronous motors ; Wavelet analysis</subject><ispartof>International journal of rotating machinery, 2024, Vol.2024, p.1-16</ispartof><rights>Copyright © 2024 Guo Ye et al.</rights><rights>Copyright © 2024 Guo Ye et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-e2b6a1d8bb9be2ffb6aa09ac615b4623d569aedbb3835300f49a621d844735253</cites><orcidid>0000-0002-8168-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2916947326/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2916947326?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,74998</link.rule.ids></links><search><contributor>Pennacchi, Paolo</contributor><contributor>Paolo Pennacchi</contributor><creatorcontrib>Ye, Guo</creatorcontrib><creatorcontrib>Lu, Yanbin</creatorcontrib><creatorcontrib>Ju, Jinyong</creatorcontrib><creatorcontrib>Sheng, Lianchao</creatorcontrib><title>Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor</title><title>International journal of rotating machinery</title><description>To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector machine(LSSVM), the extraction of features and the classification of demagnetization faults are completed. Since it is difficult to collect real data sets of demagnetization faults in practice, a two-dimensional finite element simulation model of permanent magnet synchronous motor (PMSM) under uniform demagnetization and partial demagnetization faults is established based on the Maxwell simulation platform. The wavelet packet analysis is used to extract the demagnetization feature of the A-phase current of the PMSM. Based on PCA dimensionality reduction, the dimensionality reduction of fault features is realized. The LSSVM is used to identify the fault and complete the fault classification. The simulation results show that the method has a high classification accuracy rate for demagnetization faults.</description><subject>Classification</subject><subject>Demagnetization</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Kalman filters</subject><subject>Magnetic fields</subject><subject>Neural networks</subject><subject>Permanent magnets</subject><subject>Phase current</subject><subject>Principal components analysis</subject><subject>Reduction</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><subject>Synchronous motors</subject><subject>Wavelet analysis</subject><issn>1023-621X</issn><issn>1542-3034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vEzEQhleISpTSGz_AEkdYao8_sj6itIVKjaiAStys2d3ZxFFiF9srVH49TlNx5DQfeuadGb1N81bwj0JofQEc1IUxqrOgXzSnQitoJZfqZc05yNaA-PmqeZ3zlnMA3unThr5RJkzDhsXALmmP60DF_8Hia32N866wS1-bMfvMVlQ2cWRxYisfiC3nUnxYsztKewwUCls9jbPvj2HYpBjiXGdiielNczLhLtP5czxr7q-vfiy_tLdfP98sP922gzS8tAS9QTF2fW97gmmqFXKLgxG6VwbkqI1FGvtedlJLzidlsf40dkotpAYtz5qbo-4Ycesekt9jenQRvXtqxLR2mIofduRw0S9w0rYTfFQoBFre8QUCGEIF0lStd0ethxR_zZSL28Y5hXq-AyuMrSvhQH04UkOKOSea_m0V3B1McQdT3LMpFX9_xDc-jPjb_5_-C_eOi2E</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ye, Guo</creator><creator>Lu, Yanbin</creator><creator>Ju, Jinyong</creator><creator>Sheng, Lianchao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8168-8390</orcidid></search><sort><creationdate>2024</creationdate><title>Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor</title><author>Ye, Guo ; Lu, Yanbin ; Ju, Jinyong ; Sheng, Lianchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e2b6a1d8bb9be2ffb6aa09ac615b4623d569aedbb3835300f49a621d844735253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Demagnetization</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Kalman filters</topic><topic>Magnetic fields</topic><topic>Neural networks</topic><topic>Permanent magnets</topic><topic>Phase current</topic><topic>Principal components analysis</topic><topic>Reduction</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><topic>Synchronous motors</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Guo</creatorcontrib><creatorcontrib>Lu, Yanbin</creatorcontrib><creatorcontrib>Ju, Jinyong</creatorcontrib><creatorcontrib>Sheng, Lianchao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of rotating machinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Guo</au><au>Lu, Yanbin</au><au>Ju, Jinyong</au><au>Sheng, Lianchao</au><au>Pennacchi, Paolo</au><au>Paolo Pennacchi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor</atitle><jtitle>International journal of rotating machinery</jtitle><date>2024</date><risdate>2024</risdate><volume>2024</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1023-621X</issn><eissn>1542-3034</eissn><abstract>To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector machine(LSSVM), the extraction of features and the classification of demagnetization faults are completed. Since it is difficult to collect real data sets of demagnetization faults in practice, a two-dimensional finite element simulation model of permanent magnet synchronous motor (PMSM) under uniform demagnetization and partial demagnetization faults is established based on the Maxwell simulation platform. The wavelet packet analysis is used to extract the demagnetization feature of the A-phase current of the PMSM. Based on PCA dimensionality reduction, the dimensionality reduction of fault features is realized. The LSSVM is used to identify the fault and complete the fault classification. The simulation results show that the method has a high classification accuracy rate for demagnetization faults.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2024/6648925</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8168-8390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-621X |
ispartof | International journal of rotating machinery, 2024, Vol.2024, p.1-16 |
issn | 1023-621X 1542-3034 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a7b7af59810d4a11a90807a226ea4236 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Classification Demagnetization Fault diagnosis Faults Finite element analysis Finite element method Fourier transforms Kalman filters Magnetic fields Neural networks Permanent magnets Phase current Principal components analysis Reduction Simulation Simulation models Software Spectrum analysis Support vector machines Synchronous motors Wavelet analysis |
title | Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Demagnetization%20Fault%20Diagnosis%20Method%20of%20Mine%20Cutting%20Permanent%20Magnet%20Synchronous%20Motor&rft.jtitle=International%20journal%20of%20rotating%20machinery&rft.au=Ye,%20Guo&rft.date=2024&rft.volume=2024&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1023-621X&rft.eissn=1542-3034&rft_id=info:doi/10.1155/2024/6648925&rft_dat=%3Cproquest_doaj_%3E2916947326%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-e2b6a1d8bb9be2ffb6aa09ac615b4623d569aedbb3835300f49a621d844735253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916947326&rft_id=info:pmid/&rfr_iscdi=true |