Loading…

Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor

To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector machine(LSSVM), the extraction of features and the...

Full description

Saved in:
Bibliographic Details
Published in:International journal of rotating machinery 2024, Vol.2024, p.1-16
Main Authors: Ye, Guo, Lu, Yanbin, Ju, Jinyong, Sheng, Lianchao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c360t-e2b6a1d8bb9be2ffb6aa09ac615b4623d569aedbb3835300f49a621d844735253
container_end_page 16
container_issue
container_start_page 1
container_title International journal of rotating machinery
container_volume 2024
creator Ye, Guo
Lu, Yanbin
Ju, Jinyong
Sheng, Lianchao
description To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector machine(LSSVM), the extraction of features and the classification of demagnetization faults are completed. Since it is difficult to collect real data sets of demagnetization faults in practice, a two-dimensional finite element simulation model of permanent magnet synchronous motor (PMSM) under uniform demagnetization and partial demagnetization faults is established based on the Maxwell simulation platform. The wavelet packet analysis is used to extract the demagnetization feature of the A-phase current of the PMSM. Based on PCA dimensionality reduction, the dimensionality reduction of fault features is realized. The LSSVM is used to identify the fault and complete the fault classification. The simulation results show that the method has a high classification accuracy rate for demagnetization faults.
doi_str_mv 10.1155/2024/6648925
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a7b7af59810d4a11a90807a226ea4236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a7b7af59810d4a11a90807a226ea4236</doaj_id><sourcerecordid>2916947326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e2b6a1d8bb9be2ffb6aa09ac615b4623d569aedbb3835300f49a621d844735253</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhleISpTSGz_AEkdYao8_sj6itIVKjaiAStys2d3ZxFFiF9srVH49TlNx5DQfeuadGb1N81bwj0JofQEc1IUxqrOgXzSnQitoJZfqZc05yNaA-PmqeZ3zlnMA3unThr5RJkzDhsXALmmP60DF_8Hia32N866wS1-bMfvMVlQ2cWRxYisfiC3nUnxYsztKewwUCls9jbPvj2HYpBjiXGdiielNczLhLtP5czxr7q-vfiy_tLdfP98sP922gzS8tAS9QTF2fW97gmmqFXKLgxG6VwbkqI1FGvtedlJLzidlsf40dkotpAYtz5qbo-4Ycesekt9jenQRvXtqxLR2mIofduRw0S9w0rYTfFQoBFre8QUCGEIF0lStd0ethxR_zZSL28Y5hXq-AyuMrSvhQH04UkOKOSea_m0V3B1McQdT3LMpFX9_xDc-jPjb_5_-C_eOi2E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916947326</pqid></control><display><type>article</type><title>Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Ye, Guo ; Lu, Yanbin ; Ju, Jinyong ; Sheng, Lianchao</creator><contributor>Pennacchi, Paolo ; Paolo Pennacchi</contributor><creatorcontrib>Ye, Guo ; Lu, Yanbin ; Ju, Jinyong ; Sheng, Lianchao ; Pennacchi, Paolo ; Paolo Pennacchi</creatorcontrib><description>To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector machine(LSSVM), the extraction of features and the classification of demagnetization faults are completed. Since it is difficult to collect real data sets of demagnetization faults in practice, a two-dimensional finite element simulation model of permanent magnet synchronous motor (PMSM) under uniform demagnetization and partial demagnetization faults is established based on the Maxwell simulation platform. The wavelet packet analysis is used to extract the demagnetization feature of the A-phase current of the PMSM. Based on PCA dimensionality reduction, the dimensionality reduction of fault features is realized. The LSSVM is used to identify the fault and complete the fault classification. The simulation results show that the method has a high classification accuracy rate for demagnetization faults.</description><identifier>ISSN: 1023-621X</identifier><identifier>EISSN: 1542-3034</identifier><identifier>DOI: 10.1155/2024/6648925</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Classification ; Demagnetization ; Fault diagnosis ; Faults ; Finite element analysis ; Finite element method ; Fourier transforms ; Kalman filters ; Magnetic fields ; Neural networks ; Permanent magnets ; Phase current ; Principal components analysis ; Reduction ; Simulation ; Simulation models ; Software ; Spectrum analysis ; Support vector machines ; Synchronous motors ; Wavelet analysis</subject><ispartof>International journal of rotating machinery, 2024, Vol.2024, p.1-16</ispartof><rights>Copyright © 2024 Guo Ye et al.</rights><rights>Copyright © 2024 Guo Ye et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-e2b6a1d8bb9be2ffb6aa09ac615b4623d569aedbb3835300f49a621d844735253</cites><orcidid>0000-0002-8168-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2916947326/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2916947326?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,74998</link.rule.ids></links><search><contributor>Pennacchi, Paolo</contributor><contributor>Paolo Pennacchi</contributor><creatorcontrib>Ye, Guo</creatorcontrib><creatorcontrib>Lu, Yanbin</creatorcontrib><creatorcontrib>Ju, Jinyong</creatorcontrib><creatorcontrib>Sheng, Lianchao</creatorcontrib><title>Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor</title><title>International journal of rotating machinery</title><description>To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector machine(LSSVM), the extraction of features and the classification of demagnetization faults are completed. Since it is difficult to collect real data sets of demagnetization faults in practice, a two-dimensional finite element simulation model of permanent magnet synchronous motor (PMSM) under uniform demagnetization and partial demagnetization faults is established based on the Maxwell simulation platform. The wavelet packet analysis is used to extract the demagnetization feature of the A-phase current of the PMSM. Based on PCA dimensionality reduction, the dimensionality reduction of fault features is realized. The LSSVM is used to identify the fault and complete the fault classification. The simulation results show that the method has a high classification accuracy rate for demagnetization faults.</description><subject>Classification</subject><subject>Demagnetization</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Kalman filters</subject><subject>Magnetic fields</subject><subject>Neural networks</subject><subject>Permanent magnets</subject><subject>Phase current</subject><subject>Principal components analysis</subject><subject>Reduction</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><subject>Synchronous motors</subject><subject>Wavelet analysis</subject><issn>1023-621X</issn><issn>1542-3034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vEzEQhleISpTSGz_AEkdYao8_sj6itIVKjaiAStys2d3ZxFFiF9srVH49TlNx5DQfeuadGb1N81bwj0JofQEc1IUxqrOgXzSnQitoJZfqZc05yNaA-PmqeZ3zlnMA3unThr5RJkzDhsXALmmP60DF_8Hia32N866wS1-bMfvMVlQ2cWRxYisfiC3nUnxYsztKewwUCls9jbPvj2HYpBjiXGdiielNczLhLtP5czxr7q-vfiy_tLdfP98sP922gzS8tAS9QTF2fW97gmmqFXKLgxG6VwbkqI1FGvtedlJLzidlsf40dkotpAYtz5qbo-4Ycesekt9jenQRvXtqxLR2mIofduRw0S9w0rYTfFQoBFre8QUCGEIF0lStd0ethxR_zZSL28Y5hXq-AyuMrSvhQH04UkOKOSea_m0V3B1McQdT3LMpFX9_xDc-jPjb_5_-C_eOi2E</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ye, Guo</creator><creator>Lu, Yanbin</creator><creator>Ju, Jinyong</creator><creator>Sheng, Lianchao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8168-8390</orcidid></search><sort><creationdate>2024</creationdate><title>Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor</title><author>Ye, Guo ; Lu, Yanbin ; Ju, Jinyong ; Sheng, Lianchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e2b6a1d8bb9be2ffb6aa09ac615b4623d569aedbb3835300f49a621d844735253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Demagnetization</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Kalman filters</topic><topic>Magnetic fields</topic><topic>Neural networks</topic><topic>Permanent magnets</topic><topic>Phase current</topic><topic>Principal components analysis</topic><topic>Reduction</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><topic>Synchronous motors</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Guo</creatorcontrib><creatorcontrib>Lu, Yanbin</creatorcontrib><creatorcontrib>Ju, Jinyong</creatorcontrib><creatorcontrib>Sheng, Lianchao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of rotating machinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Guo</au><au>Lu, Yanbin</au><au>Ju, Jinyong</au><au>Sheng, Lianchao</au><au>Pennacchi, Paolo</au><au>Paolo Pennacchi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor</atitle><jtitle>International journal of rotating machinery</jtitle><date>2024</date><risdate>2024</risdate><volume>2024</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1023-621X</issn><eissn>1542-3034</eissn><abstract>To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector machine(LSSVM), the extraction of features and the classification of demagnetization faults are completed. Since it is difficult to collect real data sets of demagnetization faults in practice, a two-dimensional finite element simulation model of permanent magnet synchronous motor (PMSM) under uniform demagnetization and partial demagnetization faults is established based on the Maxwell simulation platform. The wavelet packet analysis is used to extract the demagnetization feature of the A-phase current of the PMSM. Based on PCA dimensionality reduction, the dimensionality reduction of fault features is realized. The LSSVM is used to identify the fault and complete the fault classification. The simulation results show that the method has a high classification accuracy rate for demagnetization faults.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2024/6648925</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8168-8390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1023-621X
ispartof International journal of rotating machinery, 2024, Vol.2024, p.1-16
issn 1023-621X
1542-3034
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a7b7af59810d4a11a90807a226ea4236
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database
subjects Classification
Demagnetization
Fault diagnosis
Faults
Finite element analysis
Finite element method
Fourier transforms
Kalman filters
Magnetic fields
Neural networks
Permanent magnets
Phase current
Principal components analysis
Reduction
Simulation
Simulation models
Software
Spectrum analysis
Support vector machines
Synchronous motors
Wavelet analysis
title Research on Demagnetization Fault Diagnosis Method of Mine Cutting Permanent Magnet Synchronous Motor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Demagnetization%20Fault%20Diagnosis%20Method%20of%20Mine%20Cutting%20Permanent%20Magnet%20Synchronous%20Motor&rft.jtitle=International%20journal%20of%20rotating%20machinery&rft.au=Ye,%20Guo&rft.date=2024&rft.volume=2024&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1023-621X&rft.eissn=1542-3034&rft_id=info:doi/10.1155/2024/6648925&rft_dat=%3Cproquest_doaj_%3E2916947326%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-e2b6a1d8bb9be2ffb6aa09ac615b4623d569aedbb3835300f49a621d844735253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916947326&rft_id=info:pmid/&rfr_iscdi=true