Loading…

Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes

Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation resu...

Full description

Saved in:
Bibliographic Details
Published in:npj computational materials 2021-09, Vol.7 (1), p.1-11, Article 142
Main Authors: Liu, Ziteng, Shi, Yinghuan, Chen, Hongwei, Qin, Tiexin, Zhou, Xuejie, Huo, Jun, Dong, Hao, Yang, Xiao, Zhu, Xiangdong, Chen, Xuening, Zhang, Li, Yang, Mingli, Gao, Yang, Ma, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.
ISSN:2057-3960
2057-3960
DOI:10.1038/s41524-021-00618-1