Loading…

Mitochondria-derived reactive oxygen species play an important role in Doxorubicin-induced platelet apoptosis

Doxorubicin (DOX) is an effective chemotherapeutic agent; however; its use is limited by some side effects; such as cardiotoxicity and thrombocytopenia. DOX-induced cardiotoxicity has been intensively investigated; however; DOX-induced thrombocytopenia has not been clearly elucidated. Here we show t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2015-05, Vol.16 (5), p.11087-11100
Main Authors: Wang, Zhicheng, Wang, Jie, Xie, Rufeng, Liu, Ruilai, Lu, Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Doxorubicin (DOX) is an effective chemotherapeutic agent; however; its use is limited by some side effects; such as cardiotoxicity and thrombocytopenia. DOX-induced cardiotoxicity has been intensively investigated; however; DOX-induced thrombocytopenia has not been clearly elucidated. Here we show that DOX-induced mitochondria-mediated intrinsic apoptosis and glycoprotein (GP)Ibα shedding in platelets. DOX did not induce platelet activation; whereas; DOX obviously reduced adenosine diphosphate (ADP)- and thrombin-induced platelet aggregation; and impaired platelet adhesion on the von Willebrand factor (vWF) surface. In addition; we also show that DOX induced intracellular reactive oxygen species (ROS) production and mitochondrial ROS generation in a dose-dependent manner. The mitochondria-targeted ROS scavenger Mito-TEMPO blocked intracellular ROS and mitochondrial ROS generation. Furthermore; Mito-TEMPO reduced DOX-induced platelet apoptosis and GPIbα shedding. These data indicate that DOX induces platelet apoptosis; and impairs platelet function. Mitochondrial ROS play a pivotal role in DOX-induced platelet apoptosis and GPIbα shedding. Therefore; DOX-induced platelet apoptosis might contribute to DOX-triggered thrombocytopenia; and mitochondria-targeted ROS scavenger would have potential clinical utility in platelet-associated disorders involving mitochondrial oxidative damage.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms160511087