Loading…
Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection
Mycobacterium tuberculosis (M. tuberculosis) causes an enormous burden of disease worldwide. As a central aspect of its pathogenesis, M. tuberculosis grows in macrophages, and host and microbe influence each other's metabolism. To define the metabolic impact of M. tuberculosis infection, we per...
Saved in:
Published in: | The Journal of clinical investigation 2022-02, Vol.132 (3), p.1-15 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c500t-6bdb1a57fe28832432f3cf3afb9aa149ba73c1536f302f3a1083a9e94c01fe363 |
---|---|
cites | cdi_FETCH-LOGICAL-c500t-6bdb1a57fe28832432f3cf3afb9aa149ba73c1536f302f3a1083a9e94c01fe363 |
container_end_page | 15 |
container_issue | 3 |
container_start_page | 1 |
container_title | The Journal of clinical investigation |
container_volume | 132 |
creator | Chandra, Pallavi Coullon, Héloise Agarwal, Mansi Goss, Charles W Philips, Jennifer A |
description | Mycobacterium tuberculosis (M. tuberculosis) causes an enormous burden of disease worldwide. As a central aspect of its pathogenesis, M. tuberculosis grows in macrophages, and host and microbe influence each other's metabolism. To define the metabolic impact of M. tuberculosis infection, we performed global metabolic profiling of M. tuberculosis-infected macrophages. M. tuberculosis induced metabolic hallmarks of inflammatory macrophages and a prominent signature of cholesterol metabolism. We found that infected macrophages accumulate cholestenone, a mycobacterial-derived, oxidized derivative of cholesterol. We demonstrated that the accumulation of cholestenone in infected macrophages depended on the M. tuberculosis enzyme 3β-hydroxysteroid dehydrogenase (3β-Hsd) and correlated with pathogen burden. Because cholestenone is not a substantial human metabolite, we hypothesized it might be diagnostic of M. tuberculosis infection in clinical samples. Indeed, in 2 geographically distinct cohorts, sputum cholestenone levels distinguished subjects with tuberculosis (TB) from TB-negative controls who presented with TB-like symptoms. We also found country-specific detection of cholestenone in plasma samples from M. tuberculosis-infected subjects. While cholestenone was previously thought to be an intermediate required for cholesterol degradation by M. tuberculosis, we found that M. tuberculosis can utilize cholesterol for growth without making cholestenone. Thus, the accumulation of cholestenone in clinical samples suggests it has an alternative role in pathogenesis and could be a clinically useful biomarker of TB infection. |
doi_str_mv | 10.1172/JCI152509 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a7e5a3c9fee9499c9ca8baee197d2b24</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693733740</galeid><doaj_id>oai_doaj_org_article_a7e5a3c9fee9499c9ca8baee197d2b24</doaj_id><sourcerecordid>A693733740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-6bdb1a57fe28832432f3cf3afb9aa149ba73c1536f302f3a1083a9e94c01fe363</originalsourceid><addsrcrecordid>eNpdks2O0zAQgCMEYpfCgRdAlpAQHMr6J27iC9Kq4qdoV1zgbE3cceLKiYvtIO0r8NS4tFS7nGzZ33zjGU9VvWT0PWMNv_q63jDJJVWPqksmZbtsuWgf39tfVM9S2lHK6lrWT6sLIRmtW8Yvq9-3YGLYD9Aj6X3owJMRM3TBh9GZRNwWp-ysw0TMEDymjFOYkEAiQ0j5ag95CD1OxIRTnMtI9hFTiSNuIsM8wkRu70xxm4zRzSPJc4fRzD4kVzJMFk12YXpePbHgE744rYvqx6eP39dfljffPm_W1zdLIynNy1W37RjIxiJvW8Frwa0wVoDtFACrVQeNMEyKlRW0XAGjrQCFqjaUWRQrsag2R-82wE7voxsh3ukATv89CLHXELMzHjU0KEEYZbHEK2WUgbYDRKaaLe9K7kX14ejaz92IW1OKjuAfSB_eTG7Qffil25YKwWURvD0JYvg5l_bq0SWD3sOEYU6ar3hdUstGFfT1f-guzHEqrTpQjVLFxwv15kj1UAoYEHweUvDzocNJX6-UaIRoalrAd0ew_H9KEe351Yzqw1jp81gV9tX9Ms_kvzkSfwA9ycux</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627993252</pqid></control><display><type>article</type><title>Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection</title><source>Open Access: PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Chandra, Pallavi ; Coullon, Héloise ; Agarwal, Mansi ; Goss, Charles W ; Philips, Jennifer A</creator><creatorcontrib>Chandra, Pallavi ; Coullon, Héloise ; Agarwal, Mansi ; Goss, Charles W ; Philips, Jennifer A</creatorcontrib><description>Mycobacterium tuberculosis (M. tuberculosis) causes an enormous burden of disease worldwide. As a central aspect of its pathogenesis, M. tuberculosis grows in macrophages, and host and microbe influence each other's metabolism. To define the metabolic impact of M. tuberculosis infection, we performed global metabolic profiling of M. tuberculosis-infected macrophages. M. tuberculosis induced metabolic hallmarks of inflammatory macrophages and a prominent signature of cholesterol metabolism. We found that infected macrophages accumulate cholestenone, a mycobacterial-derived, oxidized derivative of cholesterol. We demonstrated that the accumulation of cholestenone in infected macrophages depended on the M. tuberculosis enzyme 3β-hydroxysteroid dehydrogenase (3β-Hsd) and correlated with pathogen burden. Because cholestenone is not a substantial human metabolite, we hypothesized it might be diagnostic of M. tuberculosis infection in clinical samples. Indeed, in 2 geographically distinct cohorts, sputum cholestenone levels distinguished subjects with tuberculosis (TB) from TB-negative controls who presented with TB-like symptoms. We also found country-specific detection of cholestenone in plasma samples from M. tuberculosis-infected subjects. While cholestenone was previously thought to be an intermediate required for cholesterol degradation by M. tuberculosis, we found that M. tuberculosis can utilize cholesterol for growth without making cholestenone. Thus, the accumulation of cholestenone in clinical samples suggests it has an alternative role in pathogenesis and could be a clinically useful biomarker of TB infection.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI152509</identifier><identifier>PMID: 35104812</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Amino acids ; Animals ; Antibiotics ; Biodegradation ; Biomarkers ; Biomedical research ; Biosynthesis ; Cholesterol ; Cholesterol metabolism ; Development and progression ; Enzymes ; Fatty acids ; Health aspects ; Homeostasis ; Host-Pathogen Interactions ; Humans ; Infections ; Infectious disease ; Inflammation ; Lipid metabolism ; Lipids ; Macrophages ; Macrophages - metabolism ; Macrophages - microbiology ; Metabolism ; Metabolites ; Metabolomics ; Mice ; Microbiology ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - physiology ; Pathogenesis ; Pathogens ; Physiological aspects ; Signal Transduction ; Sputum ; Tuberculosis ; Tuberculosis - metabolism</subject><ispartof>The Journal of clinical investigation, 2022-02, Vol.132 (3), p.1-15</ispartof><rights>COPYRIGHT 2022 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Feb 2022</rights><rights>2022 Chandra et al. 2022 Chandra et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-6bdb1a57fe28832432f3cf3afb9aa149ba73c1536f302f3a1083a9e94c01fe363</citedby><cites>FETCH-LOGICAL-c500t-6bdb1a57fe28832432f3cf3afb9aa149ba73c1536f302f3a1083a9e94c01fe363</cites><orcidid>0000-0003-2682-7316 ; 0000-0002-9476-0240 ; 0000-0002-4582-0585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803325/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803325/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35104812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandra, Pallavi</creatorcontrib><creatorcontrib>Coullon, Héloise</creatorcontrib><creatorcontrib>Agarwal, Mansi</creatorcontrib><creatorcontrib>Goss, Charles W</creatorcontrib><creatorcontrib>Philips, Jennifer A</creatorcontrib><title>Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Mycobacterium tuberculosis (M. tuberculosis) causes an enormous burden of disease worldwide. As a central aspect of its pathogenesis, M. tuberculosis grows in macrophages, and host and microbe influence each other's metabolism. To define the metabolic impact of M. tuberculosis infection, we performed global metabolic profiling of M. tuberculosis-infected macrophages. M. tuberculosis induced metabolic hallmarks of inflammatory macrophages and a prominent signature of cholesterol metabolism. We found that infected macrophages accumulate cholestenone, a mycobacterial-derived, oxidized derivative of cholesterol. We demonstrated that the accumulation of cholestenone in infected macrophages depended on the M. tuberculosis enzyme 3β-hydroxysteroid dehydrogenase (3β-Hsd) and correlated with pathogen burden. Because cholestenone is not a substantial human metabolite, we hypothesized it might be diagnostic of M. tuberculosis infection in clinical samples. Indeed, in 2 geographically distinct cohorts, sputum cholestenone levels distinguished subjects with tuberculosis (TB) from TB-negative controls who presented with TB-like symptoms. We also found country-specific detection of cholestenone in plasma samples from M. tuberculosis-infected subjects. While cholestenone was previously thought to be an intermediate required for cholesterol degradation by M. tuberculosis, we found that M. tuberculosis can utilize cholesterol for growth without making cholestenone. Thus, the accumulation of cholestenone in clinical samples suggests it has an alternative role in pathogenesis and could be a clinically useful biomarker of TB infection.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Biodegradation</subject><subject>Biomarkers</subject><subject>Biomedical research</subject><subject>Biosynthesis</subject><subject>Cholesterol</subject><subject>Cholesterol metabolism</subject><subject>Development and progression</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious disease</subject><subject>Inflammation</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Microbiology</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Physiological aspects</subject><subject>Signal Transduction</subject><subject>Sputum</subject><subject>Tuberculosis</subject><subject>Tuberculosis - metabolism</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdks2O0zAQgCMEYpfCgRdAlpAQHMr6J27iC9Kq4qdoV1zgbE3cceLKiYvtIO0r8NS4tFS7nGzZ33zjGU9VvWT0PWMNv_q63jDJJVWPqksmZbtsuWgf39tfVM9S2lHK6lrWT6sLIRmtW8Yvq9-3YGLYD9Aj6X3owJMRM3TBh9GZRNwWp-ysw0TMEDymjFOYkEAiQ0j5ag95CD1OxIRTnMtI9hFTiSNuIsM8wkRu70xxm4zRzSPJc4fRzD4kVzJMFk12YXpePbHgE744rYvqx6eP39dfljffPm_W1zdLIynNy1W37RjIxiJvW8Frwa0wVoDtFACrVQeNMEyKlRW0XAGjrQCFqjaUWRQrsag2R-82wE7voxsh3ukATv89CLHXELMzHjU0KEEYZbHEK2WUgbYDRKaaLe9K7kX14ejaz92IW1OKjuAfSB_eTG7Qffil25YKwWURvD0JYvg5l_bq0SWD3sOEYU6ar3hdUstGFfT1f-guzHEqrTpQjVLFxwv15kj1UAoYEHweUvDzocNJX6-UaIRoalrAd0ew_H9KEe351Yzqw1jp81gV9tX9Ms_kvzkSfwA9ycux</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chandra, Pallavi</creator><creator>Coullon, Héloise</creator><creator>Agarwal, Mansi</creator><creator>Goss, Charles W</creator><creator>Philips, Jennifer A</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2682-7316</orcidid><orcidid>https://orcid.org/0000-0002-9476-0240</orcidid><orcidid>https://orcid.org/0000-0002-4582-0585</orcidid></search><sort><creationdate>20220201</creationdate><title>Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection</title><author>Chandra, Pallavi ; Coullon, Héloise ; Agarwal, Mansi ; Goss, Charles W ; Philips, Jennifer A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-6bdb1a57fe28832432f3cf3afb9aa149ba73c1536f302f3a1083a9e94c01fe363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Biodegradation</topic><topic>Biomarkers</topic><topic>Biomedical research</topic><topic>Biosynthesis</topic><topic>Cholesterol</topic><topic>Cholesterol metabolism</topic><topic>Development and progression</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious disease</topic><topic>Inflammation</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Microbiology</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Physiological aspects</topic><topic>Signal Transduction</topic><topic>Sputum</topic><topic>Tuberculosis</topic><topic>Tuberculosis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandra, Pallavi</creatorcontrib><creatorcontrib>Coullon, Héloise</creatorcontrib><creatorcontrib>Agarwal, Mansi</creatorcontrib><creatorcontrib>Goss, Charles W</creatorcontrib><creatorcontrib>Philips, Jennifer A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandra, Pallavi</au><au>Coullon, Héloise</au><au>Agarwal, Mansi</au><au>Goss, Charles W</au><au>Philips, Jennifer A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>132</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Mycobacterium tuberculosis (M. tuberculosis) causes an enormous burden of disease worldwide. As a central aspect of its pathogenesis, M. tuberculosis grows in macrophages, and host and microbe influence each other's metabolism. To define the metabolic impact of M. tuberculosis infection, we performed global metabolic profiling of M. tuberculosis-infected macrophages. M. tuberculosis induced metabolic hallmarks of inflammatory macrophages and a prominent signature of cholesterol metabolism. We found that infected macrophages accumulate cholestenone, a mycobacterial-derived, oxidized derivative of cholesterol. We demonstrated that the accumulation of cholestenone in infected macrophages depended on the M. tuberculosis enzyme 3β-hydroxysteroid dehydrogenase (3β-Hsd) and correlated with pathogen burden. Because cholestenone is not a substantial human metabolite, we hypothesized it might be diagnostic of M. tuberculosis infection in clinical samples. Indeed, in 2 geographically distinct cohorts, sputum cholestenone levels distinguished subjects with tuberculosis (TB) from TB-negative controls who presented with TB-like symptoms. We also found country-specific detection of cholestenone in plasma samples from M. tuberculosis-infected subjects. While cholestenone was previously thought to be an intermediate required for cholesterol degradation by M. tuberculosis, we found that M. tuberculosis can utilize cholesterol for growth without making cholestenone. Thus, the accumulation of cholestenone in clinical samples suggests it has an alternative role in pathogenesis and could be a clinically useful biomarker of TB infection.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>35104812</pmid><doi>10.1172/JCI152509</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2682-7316</orcidid><orcidid>https://orcid.org/0000-0002-9476-0240</orcidid><orcidid>https://orcid.org/0000-0002-4582-0585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8238 |
ispartof | The Journal of clinical investigation, 2022-02, Vol.132 (3), p.1-15 |
issn | 1558-8238 0021-9738 1558-8238 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a7e5a3c9fee9499c9ca8baee197d2b24 |
source | Open Access: PubMed Central; EZB Electronic Journals Library |
subjects | Amino acids Animals Antibiotics Biodegradation Biomarkers Biomedical research Biosynthesis Cholesterol Cholesterol metabolism Development and progression Enzymes Fatty acids Health aspects Homeostasis Host-Pathogen Interactions Humans Infections Infectious disease Inflammation Lipid metabolism Lipids Macrophages Macrophages - metabolism Macrophages - microbiology Metabolism Metabolites Metabolomics Mice Microbiology Mycobacterium tuberculosis Mycobacterium tuberculosis - physiology Pathogenesis Pathogens Physiological aspects Signal Transduction Sputum Tuberculosis Tuberculosis - metabolism |
title | Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage%20global%20metabolomics%20identifies%20cholestenone%20as%20host/pathogen%20cometabolite%20present%20in%20human%20Mycobacterium%20tuberculosis%20infection&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Chandra,%20Pallavi&rft.date=2022-02-01&rft.volume=132&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI152509&rft_dat=%3Cgale_doaj_%3EA693733740%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c500t-6bdb1a57fe28832432f3cf3afb9aa149ba73c1536f302f3a1083a9e94c01fe363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627993252&rft_id=info:pmid/35104812&rft_galeid=A693733740&rfr_iscdi=true |