Loading…

Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury

Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neural transplantation & plasticity 2016-01, Vol.2016 (2016), p.1-11
Main Authors: Farrell, Kaitlin, McMullen, Mary-Katharine, Twiss, Jeffery L., Houle, John D., Sachdeva, Rahul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3
cites cdi_FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3
container_end_page 11
container_issue 2016
container_start_page 1
container_title Journal of neural transplantation & plasticity
container_volume 2016
creator Farrell, Kaitlin
McMullen, Mary-Katharine
Twiss, Jeffery L.
Houle, John D.
Sachdeva, Rahul
description Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.
doi_str_mv 10.1155/2016/4087254
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a7ef96b4c82248f19deec2413ed88a74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513640902</galeid><doaj_id>oai_doaj_org_article_a7ef96b4c82248f19deec2413ed88a74</doaj_id><sourcerecordid>A513640902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3</originalsourceid><addsrcrecordid>eNqNks2P0zAQxSMEYsvCjTOKhISQoLu2YzvOBakqX5XKh1g4W9Nk0rpK7a6dLpS_niktu1vEAeWQePKbZ82bl2WPOTvjXKlzwbg-l8yUQsk72YBrUw6VlMXdbCBYxYaqYvIke5DSkjGplVL3sxNRFuWuPsh-vt56WLk6Hy_AzzHlzufTUEOXf46hRzpdbH2_wJ6QD1AvnMe43UFfcI70Db3z83yMvo_U8xHjVdgk6kk9rvLRj-BTDm2PMb9YO0_EOMQmn_jlJm4fZvda6BI-OrxPs29v33wdvx9OP72bjEfTYa0L1Q-1AdlIwwwvpDJazcoGWtBCKmEMaGACWQGiLpBVaITWDVOl5HXRYKvAQHGaTfa6TYClXUe3gri1AZz9XQhxbiHSfB1aKLGt9EzWRghpWl41iLWQvMCG7iolab3aa603sxU29X7uI9HjP94t7DxcWVlxWRaKBJ4fBGK43GDq7cqlGrsOPJJzlhtGy6mMEYQ-_Qtdhk0kE5MVkpVakyXlDTUHGsD5NtC99U7UjhQvtKQM7LTO_kHR0yAtP3hsHdWPGp7dalggdP0ihW7TO1rpMfhyD9YxpBSxvTaDM7sLqN0F1B4CSviT2wZew38SScCLPUBRa-C7-085JAZbuKE5LziJ_gIABPUU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407660817</pqid></control><display><type>article</type><title>Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><creator>Farrell, Kaitlin ; McMullen, Mary-Katharine ; Twiss, Jeffery L. ; Houle, John D. ; Sachdeva, Rahul</creator><contributor>Kihara, Alexandre H. ; Alexandre H Kihara</contributor><creatorcontrib>Farrell, Kaitlin ; McMullen, Mary-Katharine ; Twiss, Jeffery L. ; Houle, John D. ; Sachdeva, Rahul ; Kihara, Alexandre H. ; Alexandre H Kihara</creatorcontrib><description>Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.</description><identifier>ISSN: 2090-5904</identifier><identifier>ISSN: 0792-8483</identifier><identifier>EISSN: 1687-5443</identifier><identifier>DOI: 10.1155/2016/4087254</identifier><identifier>PMID: 27375904</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Animals ; Axons - metabolism ; Central nervous system ; Central Nervous System - metabolism ; Female ; Laboratories ; Nerve Regeneration - physiology ; Nervous system ; Protein biosynthesis ; Protein Biosynthesis - physiology ; Protein synthesis ; Proteins ; Rats ; Rats, Sprague-Dawley ; Spinal cord injuries ; Spinal Cord Injuries - metabolism ; Spinal Cord Injuries - surgery ; Thoracic Vertebrae ; Tibial Nerve - metabolism ; Tibial Nerve - transplantation ; Tissue Transplantation - methods</subject><ispartof>Journal of neural transplantation &amp; plasticity, 2016-01, Vol.2016 (2016), p.1-11</ispartof><rights>Copyright © 2016 Rahul Sachdeva et al.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2016 Rahul Sachdeva et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2016 Rahul Sachdeva et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3</citedby><cites>FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2407660817/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2407660817?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27375904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kihara, Alexandre H.</contributor><contributor>Alexandre H Kihara</contributor><creatorcontrib>Farrell, Kaitlin</creatorcontrib><creatorcontrib>McMullen, Mary-Katharine</creatorcontrib><creatorcontrib>Twiss, Jeffery L.</creatorcontrib><creatorcontrib>Houle, John D.</creatorcontrib><creatorcontrib>Sachdeva, Rahul</creatorcontrib><title>Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury</title><title>Journal of neural transplantation &amp; plasticity</title><addtitle>Neural Plast</addtitle><description>Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Central nervous system</subject><subject>Central Nervous System - metabolism</subject><subject>Female</subject><subject>Laboratories</subject><subject>Nerve Regeneration - physiology</subject><subject>Nervous system</subject><subject>Protein biosynthesis</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - metabolism</subject><subject>Spinal Cord Injuries - surgery</subject><subject>Thoracic Vertebrae</subject><subject>Tibial Nerve - metabolism</subject><subject>Tibial Nerve - transplantation</subject><subject>Tissue Transplantation - methods</subject><issn>2090-5904</issn><issn>0792-8483</issn><issn>1687-5443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks2P0zAQxSMEYsvCjTOKhISQoLu2YzvOBakqX5XKh1g4W9Nk0rpK7a6dLpS_niktu1vEAeWQePKbZ82bl2WPOTvjXKlzwbg-l8yUQsk72YBrUw6VlMXdbCBYxYaqYvIke5DSkjGplVL3sxNRFuWuPsh-vt56WLk6Hy_AzzHlzufTUEOXf46hRzpdbH2_wJ6QD1AvnMe43UFfcI70Db3z83yMvo_U8xHjVdgk6kk9rvLRj-BTDm2PMb9YO0_EOMQmn_jlJm4fZvda6BI-OrxPs29v33wdvx9OP72bjEfTYa0L1Q-1AdlIwwwvpDJazcoGWtBCKmEMaGACWQGiLpBVaITWDVOl5HXRYKvAQHGaTfa6TYClXUe3gri1AZz9XQhxbiHSfB1aKLGt9EzWRghpWl41iLWQvMCG7iolab3aa603sxU29X7uI9HjP94t7DxcWVlxWRaKBJ4fBGK43GDq7cqlGrsOPJJzlhtGy6mMEYQ-_Qtdhk0kE5MVkpVakyXlDTUHGsD5NtC99U7UjhQvtKQM7LTO_kHR0yAtP3hsHdWPGp7dalggdP0ihW7TO1rpMfhyD9YxpBSxvTaDM7sLqN0F1B4CSviT2wZew38SScCLPUBRa-C7-085JAZbuKE5LziJ_gIABPUU</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Farrell, Kaitlin</creator><creator>McMullen, Mary-Katharine</creator><creator>Twiss, Jeffery L.</creator><creator>Houle, John D.</creator><creator>Sachdeva, Rahul</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160101</creationdate><title>Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury</title><author>Farrell, Kaitlin ; McMullen, Mary-Katharine ; Twiss, Jeffery L. ; Houle, John D. ; Sachdeva, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Central nervous system</topic><topic>Central Nervous System - metabolism</topic><topic>Female</topic><topic>Laboratories</topic><topic>Nerve Regeneration - physiology</topic><topic>Nervous system</topic><topic>Protein biosynthesis</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - metabolism</topic><topic>Spinal Cord Injuries - surgery</topic><topic>Thoracic Vertebrae</topic><topic>Tibial Nerve - metabolism</topic><topic>Tibial Nerve - transplantation</topic><topic>Tissue Transplantation - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farrell, Kaitlin</creatorcontrib><creatorcontrib>McMullen, Mary-Katharine</creatorcontrib><creatorcontrib>Twiss, Jeffery L.</creatorcontrib><creatorcontrib>Houle, John D.</creatorcontrib><creatorcontrib>Sachdeva, Rahul</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Psychology Database (ProQuest)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of neural transplantation &amp; plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farrell, Kaitlin</au><au>McMullen, Mary-Katharine</au><au>Twiss, Jeffery L.</au><au>Houle, John D.</au><au>Sachdeva, Rahul</au><au>Kihara, Alexandre H.</au><au>Alexandre H Kihara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury</atitle><jtitle>Journal of neural transplantation &amp; plasticity</jtitle><addtitle>Neural Plast</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2090-5904</issn><issn>0792-8483</issn><eissn>1687-5443</eissn><abstract>Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27375904</pmid><doi>10.1155/2016/4087254</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-5904
ispartof Journal of neural transplantation & plasticity, 2016-01, Vol.2016 (2016), p.1-11
issn 2090-5904
0792-8483
1687-5443
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a7ef96b4c82248f19deec2413ed88a74
source PMC (PubMed Central); Publicly Available Content (ProQuest); Wiley Open Access
subjects Animals
Axons - metabolism
Central nervous system
Central Nervous System - metabolism
Female
Laboratories
Nerve Regeneration - physiology
Nervous system
Protein biosynthesis
Protein Biosynthesis - physiology
Protein synthesis
Proteins
Rats
Rats, Sprague-Dawley
Spinal cord injuries
Spinal Cord Injuries - metabolism
Spinal Cord Injuries - surgery
Thoracic Vertebrae
Tibial Nerve - metabolism
Tibial Nerve - transplantation
Tissue Transplantation - methods
title Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Changes%20in%20Local%20Protein%20Synthetic%20Machinery%20in%20Regenerating%20Central%20Nervous%20System%20Axons%20after%20Spinal%20Cord%20Injury&rft.jtitle=Journal%20of%20neural%20transplantation%20&%20plasticity&rft.au=Farrell,%20Kaitlin&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2090-5904&rft.eissn=1687-5443&rft_id=info:doi/10.1155/2016/4087254&rft_dat=%3Cgale_doaj_%3EA513640902%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407660817&rft_id=info:pmid/27375904&rft_galeid=A513640902&rfr_iscdi=true