Loading…
Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury
Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising t...
Saved in:
Published in: | Journal of neural transplantation & plasticity 2016-01, Vol.2016 (2016), p.1-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3 |
container_end_page | 11 |
container_issue | 2016 |
container_start_page | 1 |
container_title | Journal of neural transplantation & plasticity |
container_volume | 2016 |
creator | Farrell, Kaitlin McMullen, Mary-Katharine Twiss, Jeffery L. Houle, John D. Sachdeva, Rahul |
description | Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury. |
doi_str_mv | 10.1155/2016/4087254 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a7ef96b4c82248f19deec2413ed88a74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513640902</galeid><doaj_id>oai_doaj_org_article_a7ef96b4c82248f19deec2413ed88a74</doaj_id><sourcerecordid>A513640902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3</originalsourceid><addsrcrecordid>eNqNks2P0zAQxSMEYsvCjTOKhISQoLu2YzvOBakqX5XKh1g4W9Nk0rpK7a6dLpS_niktu1vEAeWQePKbZ82bl2WPOTvjXKlzwbg-l8yUQsk72YBrUw6VlMXdbCBYxYaqYvIke5DSkjGplVL3sxNRFuWuPsh-vt56WLk6Hy_AzzHlzufTUEOXf46hRzpdbH2_wJ6QD1AvnMe43UFfcI70Db3z83yMvo_U8xHjVdgk6kk9rvLRj-BTDm2PMb9YO0_EOMQmn_jlJm4fZvda6BI-OrxPs29v33wdvx9OP72bjEfTYa0L1Q-1AdlIwwwvpDJazcoGWtBCKmEMaGACWQGiLpBVaITWDVOl5HXRYKvAQHGaTfa6TYClXUe3gri1AZz9XQhxbiHSfB1aKLGt9EzWRghpWl41iLWQvMCG7iolab3aa603sxU29X7uI9HjP94t7DxcWVlxWRaKBJ4fBGK43GDq7cqlGrsOPJJzlhtGy6mMEYQ-_Qtdhk0kE5MVkpVakyXlDTUHGsD5NtC99U7UjhQvtKQM7LTO_kHR0yAtP3hsHdWPGp7dalggdP0ihW7TO1rpMfhyD9YxpBSxvTaDM7sLqN0F1B4CSviT2wZew38SScCLPUBRa-C7-085JAZbuKE5LziJ_gIABPUU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407660817</pqid></control><display><type>article</type><title>Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><creator>Farrell, Kaitlin ; McMullen, Mary-Katharine ; Twiss, Jeffery L. ; Houle, John D. ; Sachdeva, Rahul</creator><contributor>Kihara, Alexandre H. ; Alexandre H Kihara</contributor><creatorcontrib>Farrell, Kaitlin ; McMullen, Mary-Katharine ; Twiss, Jeffery L. ; Houle, John D. ; Sachdeva, Rahul ; Kihara, Alexandre H. ; Alexandre H Kihara</creatorcontrib><description>Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.</description><identifier>ISSN: 2090-5904</identifier><identifier>ISSN: 0792-8483</identifier><identifier>EISSN: 1687-5443</identifier><identifier>DOI: 10.1155/2016/4087254</identifier><identifier>PMID: 27375904</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Animals ; Axons - metabolism ; Central nervous system ; Central Nervous System - metabolism ; Female ; Laboratories ; Nerve Regeneration - physiology ; Nervous system ; Protein biosynthesis ; Protein Biosynthesis - physiology ; Protein synthesis ; Proteins ; Rats ; Rats, Sprague-Dawley ; Spinal cord injuries ; Spinal Cord Injuries - metabolism ; Spinal Cord Injuries - surgery ; Thoracic Vertebrae ; Tibial Nerve - metabolism ; Tibial Nerve - transplantation ; Tissue Transplantation - methods</subject><ispartof>Journal of neural transplantation & plasticity, 2016-01, Vol.2016 (2016), p.1-11</ispartof><rights>Copyright © 2016 Rahul Sachdeva et al.</rights><rights>COPYRIGHT 2016 John Wiley & Sons, Inc.</rights><rights>Copyright © 2016 Rahul Sachdeva et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2016 Rahul Sachdeva et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3</citedby><cites>FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2407660817/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2407660817?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27375904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kihara, Alexandre H.</contributor><contributor>Alexandre H Kihara</contributor><creatorcontrib>Farrell, Kaitlin</creatorcontrib><creatorcontrib>McMullen, Mary-Katharine</creatorcontrib><creatorcontrib>Twiss, Jeffery L.</creatorcontrib><creatorcontrib>Houle, John D.</creatorcontrib><creatorcontrib>Sachdeva, Rahul</creatorcontrib><title>Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury</title><title>Journal of neural transplantation & plasticity</title><addtitle>Neural Plast</addtitle><description>Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Central nervous system</subject><subject>Central Nervous System - metabolism</subject><subject>Female</subject><subject>Laboratories</subject><subject>Nerve Regeneration - physiology</subject><subject>Nervous system</subject><subject>Protein biosynthesis</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - metabolism</subject><subject>Spinal Cord Injuries - surgery</subject><subject>Thoracic Vertebrae</subject><subject>Tibial Nerve - metabolism</subject><subject>Tibial Nerve - transplantation</subject><subject>Tissue Transplantation - methods</subject><issn>2090-5904</issn><issn>0792-8483</issn><issn>1687-5443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks2P0zAQxSMEYsvCjTOKhISQoLu2YzvOBakqX5XKh1g4W9Nk0rpK7a6dLpS_niktu1vEAeWQePKbZ82bl2WPOTvjXKlzwbg-l8yUQsk72YBrUw6VlMXdbCBYxYaqYvIke5DSkjGplVL3sxNRFuWuPsh-vt56WLk6Hy_AzzHlzufTUEOXf46hRzpdbH2_wJ6QD1AvnMe43UFfcI70Db3z83yMvo_U8xHjVdgk6kk9rvLRj-BTDm2PMb9YO0_EOMQmn_jlJm4fZvda6BI-OrxPs29v33wdvx9OP72bjEfTYa0L1Q-1AdlIwwwvpDJazcoGWtBCKmEMaGACWQGiLpBVaITWDVOl5HXRYKvAQHGaTfa6TYClXUe3gri1AZz9XQhxbiHSfB1aKLGt9EzWRghpWl41iLWQvMCG7iolab3aa603sxU29X7uI9HjP94t7DxcWVlxWRaKBJ4fBGK43GDq7cqlGrsOPJJzlhtGy6mMEYQ-_Qtdhk0kE5MVkpVakyXlDTUHGsD5NtC99U7UjhQvtKQM7LTO_kHR0yAtP3hsHdWPGp7dalggdP0ihW7TO1rpMfhyD9YxpBSxvTaDM7sLqN0F1B4CSviT2wZew38SScCLPUBRa-C7-085JAZbuKE5LziJ_gIABPUU</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Farrell, Kaitlin</creator><creator>McMullen, Mary-Katharine</creator><creator>Twiss, Jeffery L.</creator><creator>Houle, John D.</creator><creator>Sachdeva, Rahul</creator><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160101</creationdate><title>Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury</title><author>Farrell, Kaitlin ; McMullen, Mary-Katharine ; Twiss, Jeffery L. ; Houle, John D. ; Sachdeva, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Central nervous system</topic><topic>Central Nervous System - metabolism</topic><topic>Female</topic><topic>Laboratories</topic><topic>Nerve Regeneration - physiology</topic><topic>Nervous system</topic><topic>Protein biosynthesis</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - metabolism</topic><topic>Spinal Cord Injuries - surgery</topic><topic>Thoracic Vertebrae</topic><topic>Tibial Nerve - metabolism</topic><topic>Tibial Nerve - transplantation</topic><topic>Tissue Transplantation - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farrell, Kaitlin</creatorcontrib><creatorcontrib>McMullen, Mary-Katharine</creatorcontrib><creatorcontrib>Twiss, Jeffery L.</creatorcontrib><creatorcontrib>Houle, John D.</creatorcontrib><creatorcontrib>Sachdeva, Rahul</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Psychology Database (ProQuest)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of neural transplantation & plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farrell, Kaitlin</au><au>McMullen, Mary-Katharine</au><au>Twiss, Jeffery L.</au><au>Houle, John D.</au><au>Sachdeva, Rahul</au><au>Kihara, Alexandre H.</au><au>Alexandre H Kihara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury</atitle><jtitle>Journal of neural transplantation & plasticity</jtitle><addtitle>Neural Plast</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2090-5904</issn><issn>0792-8483</issn><eissn>1687-5443</eissn><abstract>Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27375904</pmid><doi>10.1155/2016/4087254</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-5904 |
ispartof | Journal of neural transplantation & plasticity, 2016-01, Vol.2016 (2016), p.1-11 |
issn | 2090-5904 0792-8483 1687-5443 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a7ef96b4c82248f19deec2413ed88a74 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest); Wiley Open Access |
subjects | Animals Axons - metabolism Central nervous system Central Nervous System - metabolism Female Laboratories Nerve Regeneration - physiology Nervous system Protein biosynthesis Protein Biosynthesis - physiology Protein synthesis Proteins Rats Rats, Sprague-Dawley Spinal cord injuries Spinal Cord Injuries - metabolism Spinal Cord Injuries - surgery Thoracic Vertebrae Tibial Nerve - metabolism Tibial Nerve - transplantation Tissue Transplantation - methods |
title | Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Changes%20in%20Local%20Protein%20Synthetic%20Machinery%20in%20Regenerating%20Central%20Nervous%20System%20Axons%20after%20Spinal%20Cord%20Injury&rft.jtitle=Journal%20of%20neural%20transplantation%20&%20plasticity&rft.au=Farrell,%20Kaitlin&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2090-5904&rft.eissn=1687-5443&rft_id=info:doi/10.1155/2016/4087254&rft_dat=%3Cgale_doaj_%3EA513640902%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c635t-68a4d48081345865b7dafa6245288a6a02e03a2c3e09e8266d05741c3def5a8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407660817&rft_id=info:pmid/27375904&rft_galeid=A513640902&rfr_iscdi=true |