Loading…
Controllable 1,3-Bis-Functionalization of 2‑Nitroglycals with High Regioselectivity and Stereoselectivity Enabled by a H‑Bond Catalyst
The selective modification of carbohydrates is significant for producing their unnatural analogues for drug discovery. C1-functionalization (glycosylation) and C1,C2-difunctionalization of carbohydrates have been well developed. In contrast, C3-functionalization or C1,C3-difunctionalization of carbo...
Saved in:
Published in: | JACS Au 2024-03, Vol.4 (3), p.974-984 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The selective modification of carbohydrates is significant for producing their unnatural analogues for drug discovery. C1-functionalization (glycosylation) and C1,C2-difunctionalization of carbohydrates have been well developed. In contrast, C3-functionalization or C1,C3-difunctionalization of carbohydrates remains rare. Herein, we report such processes that efficiently and stereoselectively modify carbohydrates. Specifically, we found that trifluoroethanol (TFE) could promote 1,3-bis-indolylation/pyrrolylation of 2-nitroglycals generated carbohydrate derivatives in up to 93% yield at room temperature; slightly reducing the temperature could install two different indoles at the C1- and C3-positions. Switching TFE to a bifunctional amino thiourea catalyst leads to the generation of C3 monosubstituted carbohydrates, which could also be used to construct 1,3-di-C-functionalized carbohydrates. This approach produced a range of challenging sugar derivatives (over 80 examples) with controllable and high stereoselectivity (single isomer for over 90% of the examples). The potential applications of the reaction were demonstrated by a set of transformations including the synthesis of bridged large-ring molecules and gram scale reactions. Biological activities evaluation demonstrated that three compounds exhibit a potent inhibitory effect on human cancer cells T24, HCT116, AGS, and MKN-45 with IC50 ranged from 0.695 to 3.548 μM. |
---|---|
ISSN: | 2691-3704 2691-3704 |
DOI: | 10.1021/jacsau.3c00727 |