Loading…

Contribution of the α5 nAChR Subunit and α5SNP to Nicotine-Induced Proliferation and Migration of Human Cancer Cells

Nicotine in tobacco is known to induce tumor-promoting effects and cause chemotherapy resistance through the activation of nicotinic acetylcholine receptors (nAChRs). Many studies have associated the α5 nicotinic receptor subunit (α5), and a specific polymorphism in this subunit, with (i) nicotine a...

Full description

Saved in:
Bibliographic Details
Published in:Cells (Basel, Switzerland) Switzerland), 2023-08, Vol.12 (15), p.2000
Main Authors: Papapostolou, Irida, Ross-Kaschitza, Daniela, Bochen, Florian, Peinelt, Christine, Maldifassi, Maria Constanza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nicotine in tobacco is known to induce tumor-promoting effects and cause chemotherapy resistance through the activation of nicotinic acetylcholine receptors (nAChRs). Many studies have associated the α5 nicotinic receptor subunit (α5), and a specific polymorphism in this subunit, with (i) nicotine administration, (ii) nicotine dependence, and (iii) lung cancer. The α5 gene mRNA is upregulated in several types of cancer, including lung, prostate, colorectal, and stomach cancer, and cancer severity is correlated with smoking. In this study, we investigate the contribution of α5 in the nicotine-induced cancer hallmark functions proliferation and migration, in breast, colon, and prostate cancer cells. Nine human cell lines from different origins were used to determine nAChR subunit expression levels. Then, selected breast (MCF7), colon (SW480), and prostate (DU145) cancer cell lines were used to investigate the nicotine-induced effects mediated by α5. Using pharmacological and siRNA-based experiments, we show that α5 is essential for nicotine-induced proliferation and migration. Additionally, upon downregulation of α5, nicotine-promoted expression of EMT markers and immune regulatory proteins was impaired. Moreover, the α5 polymorphism D398N (α5SNP) caused a basal increase in proliferation and migration in the DU145 cell line, and the effect was mediated through G-protein signaling. Taken together, our results indicate that nicotine-induced cancer cell proliferation and migration are mediated via α5, adding to the characterization of α5 as a putative therapeutical target.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells12152000