Loading…
A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development
Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an app...
Saved in:
Published in: | BMC genomics 2024-06, Vol.25 (1), p.617-13, Article 617 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-63530f203feb54b866bc80b334a88a720e00c11cbb4a16e3ccb80bde264c87d93 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 617 |
container_title | BMC genomics |
container_volume | 25 |
creator | Wang, Qianghui Han, Ruobing Xing, Haihua Li, Heping |
description | Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an appropriate reference genome. Thus, obtaining a high-quality reference genome is imperative to delve into functional genomics effectively.
Here we report a high-quality consensus genome of male sika deer. All 34 chromosomes are assembled into single-contig pseudomolecules without any gaps, which is the most complete assembly. The genome size is 2.7G with 23,284 protein-coding genes. Comparative genomics analysis found that the genomes of sika deer and red deer are highly conserved, an approximately 2.4G collinear regions with up to 99% sequence similarity. Meanwhile, we observed the fusion of red deer's Chr23 and Chr4 during evolution, forming sika deer's Chr1. Additionally, we identified 607 transcription factors (TFs) that are involved in the regulation of antler development, including RUNX2, SOX6, SOX8, SOX9, PAX8, SIX2, SIX4, SIX6, SPI1, NFAC1, KLHL8, ZN710, JDP2, and TWST2, based on this consensus reference genome.
Our results indicated that we acquired a high-quality consensus reference genome. That provided valuable resources for understanding functional genomics. In addition, discovered the genetic basis of sika-red hybrid fertility and identified 607 significant TFs that impact antler development. |
doi_str_mv | 10.1186/s12864-024-10522-9 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a836b0418dde4b0cac882dc872af43d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A798233086</galeid><doaj_id>oai_doaj_org_article_a836b0418dde4b0cac882dc872af43d8</doaj_id><sourcerecordid>A798233086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-63530f203feb54b866bc80b334a88a720e00c11cbb4a16e3ccb80bde264c87d93</originalsourceid><addsrcrecordid>eNptkktv1DAQgCMEoqXwBzggS1zaQ4ofeTgntFrxWKkSEo-z5diTrEtiB9tZtT-Jf4mzW9ouQjkk8XzzjcYzWfaa4EtCePUuEMqrIse0yAkuKc2bJ9kpKWqSU1IVTx99n2QvQrjGmNScls-zE8Z5g8umPM1-r5ByNoANc0A9WDcCch0K5qdEGsCj8zX4XYpZM03OXiBpNYpe2qC8meKCSyuH22ACmrzbGQ0aWbeDARkbTL-NATmL4haQh34eZDTpdwS1ldaEcan1YEOdVNH5lJmkcUjVNSSTm0aw8WX2rJNDgFd377Psx8cP39ef86svnzbr1VWuirqJecVKhjuKWQdtWbS8qlrFcctYITmXNcWAsSJEtW0hSQVMqTaFNdCqULzWDTvLNgevdvJaTN6M0t8KJ43YHzjfC-mjUQMIyVnV4oJwraFosZKKc6qThsquYJon1_uDa5rbEbRKbXg5HEmPI9ZsRe92giwDJuViOL8zePdrhhDFaIKCYZAW3BwEwzWum5rVJKFv_0Gv3ezTcPZUQzhlFX-gepk6MLZzqbBapGJVN4lhmFeJuvwPlR4No0kLA51J50cJF0cJiYlwE3s5hyA2374es_TAKu9C8NDdXwjBYmlcHDZbpM0W-80Wy1jePL7K-5S_q8z-AAh_9j8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079182368</pqid></control><display><type>article</type><title>A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Qianghui ; Han, Ruobing ; Xing, Haihua ; Li, Heping</creator><creatorcontrib>Wang, Qianghui ; Han, Ruobing ; Xing, Haihua ; Li, Heping</creatorcontrib><description>Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an appropriate reference genome. Thus, obtaining a high-quality reference genome is imperative to delve into functional genomics effectively.
Here we report a high-quality consensus genome of male sika deer. All 34 chromosomes are assembled into single-contig pseudomolecules without any gaps, which is the most complete assembly. The genome size is 2.7G with 23,284 protein-coding genes. Comparative genomics analysis found that the genomes of sika deer and red deer are highly conserved, an approximately 2.4G collinear regions with up to 99% sequence similarity. Meanwhile, we observed the fusion of red deer's Chr23 and Chr4 during evolution, forming sika deer's Chr1. Additionally, we identified 607 transcription factors (TFs) that are involved in the regulation of antler development, including RUNX2, SOX6, SOX8, SOX9, PAX8, SIX2, SIX4, SIX6, SPI1, NFAC1, KLHL8, ZN710, JDP2, and TWST2, based on this consensus reference genome.
Our results indicated that we acquired a high-quality consensus reference genome. That provided valuable resources for understanding functional genomics. In addition, discovered the genetic basis of sika-red hybrid fertility and identified 607 significant TFs that impact antler development.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-024-10522-9</identifier><identifier>PMID: 38890595</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accuracy ; Animals ; Antler development ; Antlers - growth & development ; Antlers - metabolism ; Cbfa-1 protein ; Cervus elaphus ; Cervus nippon ; Chromosome evolution ; Chromosomes ; Comparative analysis ; Consensus genome ; Conserved sequence ; Deer ; Deer - genetics ; Deer - growth & development ; DNA binding proteins ; Evolution ; Evolutionary genetics ; Fertility ; Gene expression ; Gene Expression Profiling ; Gene regulation ; Genes ; Genome ; Genomes ; Genomic analysis ; Genomics ; Genomics - methods ; Haplotypes ; Kinases ; Male ; Nucleotide sequence ; Pax8 protein ; Proteins ; Sika deer ; SIX gene family ; Sox9 protein ; TFs ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptome ; Transcriptomes</subject><ispartof>BMC genomics, 2024-06, Vol.25 (1), p.617-13, Article 617</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-63530f203feb54b866bc80b334a88a720e00c11cbb4a16e3ccb80bde264c87d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186158/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3079182368?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38890595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qianghui</creatorcontrib><creatorcontrib>Han, Ruobing</creatorcontrib><creatorcontrib>Xing, Haihua</creatorcontrib><creatorcontrib>Li, Heping</creatorcontrib><title>A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an appropriate reference genome. Thus, obtaining a high-quality reference genome is imperative to delve into functional genomics effectively.
Here we report a high-quality consensus genome of male sika deer. All 34 chromosomes are assembled into single-contig pseudomolecules without any gaps, which is the most complete assembly. The genome size is 2.7G with 23,284 protein-coding genes. Comparative genomics analysis found that the genomes of sika deer and red deer are highly conserved, an approximately 2.4G collinear regions with up to 99% sequence similarity. Meanwhile, we observed the fusion of red deer's Chr23 and Chr4 during evolution, forming sika deer's Chr1. Additionally, we identified 607 transcription factors (TFs) that are involved in the regulation of antler development, including RUNX2, SOX6, SOX8, SOX9, PAX8, SIX2, SIX4, SIX6, SPI1, NFAC1, KLHL8, ZN710, JDP2, and TWST2, based on this consensus reference genome.
Our results indicated that we acquired a high-quality consensus reference genome. That provided valuable resources for understanding functional genomics. In addition, discovered the genetic basis of sika-red hybrid fertility and identified 607 significant TFs that impact antler development.</description><subject>Accuracy</subject><subject>Animals</subject><subject>Antler development</subject><subject>Antlers - growth & development</subject><subject>Antlers - metabolism</subject><subject>Cbfa-1 protein</subject><subject>Cervus elaphus</subject><subject>Cervus nippon</subject><subject>Chromosome evolution</subject><subject>Chromosomes</subject><subject>Comparative analysis</subject><subject>Consensus genome</subject><subject>Conserved sequence</subject><subject>Deer</subject><subject>Deer - genetics</subject><subject>Deer - growth & development</subject><subject>DNA binding proteins</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Fertility</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Haplotypes</subject><subject>Kinases</subject><subject>Male</subject><subject>Nucleotide sequence</subject><subject>Pax8 protein</subject><subject>Proteins</subject><subject>Sika deer</subject><subject>SIX gene family</subject><subject>Sox9 protein</subject><subject>TFs</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAQgCMEoqXwBzggS1zaQ4ofeTgntFrxWKkSEo-z5diTrEtiB9tZtT-Jf4mzW9ouQjkk8XzzjcYzWfaa4EtCePUuEMqrIse0yAkuKc2bJ9kpKWqSU1IVTx99n2QvQrjGmNScls-zE8Z5g8umPM1-r5ByNoANc0A9WDcCch0K5qdEGsCj8zX4XYpZM03OXiBpNYpe2qC8meKCSyuH22ACmrzbGQ0aWbeDARkbTL-NATmL4haQh34eZDTpdwS1ldaEcan1YEOdVNH5lJmkcUjVNSSTm0aw8WX2rJNDgFd377Psx8cP39ef86svnzbr1VWuirqJecVKhjuKWQdtWbS8qlrFcctYITmXNcWAsSJEtW0hSQVMqTaFNdCqULzWDTvLNgevdvJaTN6M0t8KJ43YHzjfC-mjUQMIyVnV4oJwraFosZKKc6qThsquYJon1_uDa5rbEbRKbXg5HEmPI9ZsRe92giwDJuViOL8zePdrhhDFaIKCYZAW3BwEwzWum5rVJKFv_0Gv3ezTcPZUQzhlFX-gepk6MLZzqbBapGJVN4lhmFeJuvwPlR4No0kLA51J50cJF0cJiYlwE3s5hyA2374es_TAKu9C8NDdXwjBYmlcHDZbpM0W-80Wy1jePL7K-5S_q8z-AAh_9j8</recordid><startdate>20240619</startdate><enddate>20240619</enddate><creator>Wang, Qianghui</creator><creator>Han, Ruobing</creator><creator>Xing, Haihua</creator><creator>Li, Heping</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240619</creationdate><title>A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development</title><author>Wang, Qianghui ; Han, Ruobing ; Xing, Haihua ; Li, Heping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-63530f203feb54b866bc80b334a88a720e00c11cbb4a16e3ccb80bde264c87d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Animals</topic><topic>Antler development</topic><topic>Antlers - growth & development</topic><topic>Antlers - metabolism</topic><topic>Cbfa-1 protein</topic><topic>Cervus elaphus</topic><topic>Cervus nippon</topic><topic>Chromosome evolution</topic><topic>Chromosomes</topic><topic>Comparative analysis</topic><topic>Consensus genome</topic><topic>Conserved sequence</topic><topic>Deer</topic><topic>Deer - genetics</topic><topic>Deer - growth & development</topic><topic>DNA binding proteins</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Fertility</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Haplotypes</topic><topic>Kinases</topic><topic>Male</topic><topic>Nucleotide sequence</topic><topic>Pax8 protein</topic><topic>Proteins</topic><topic>Sika deer</topic><topic>SIX gene family</topic><topic>Sox9 protein</topic><topic>TFs</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qianghui</creatorcontrib><creatorcontrib>Han, Ruobing</creatorcontrib><creatorcontrib>Xing, Haihua</creatorcontrib><creatorcontrib>Li, Heping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qianghui</au><au>Han, Ruobing</au><au>Xing, Haihua</au><au>Li, Heping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2024-06-19</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>617</spage><epage>13</epage><pages>617-13</pages><artnum>617</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an appropriate reference genome. Thus, obtaining a high-quality reference genome is imperative to delve into functional genomics effectively.
Here we report a high-quality consensus genome of male sika deer. All 34 chromosomes are assembled into single-contig pseudomolecules without any gaps, which is the most complete assembly. The genome size is 2.7G with 23,284 protein-coding genes. Comparative genomics analysis found that the genomes of sika deer and red deer are highly conserved, an approximately 2.4G collinear regions with up to 99% sequence similarity. Meanwhile, we observed the fusion of red deer's Chr23 and Chr4 during evolution, forming sika deer's Chr1. Additionally, we identified 607 transcription factors (TFs) that are involved in the regulation of antler development, including RUNX2, SOX6, SOX8, SOX9, PAX8, SIX2, SIX4, SIX6, SPI1, NFAC1, KLHL8, ZN710, JDP2, and TWST2, based on this consensus reference genome.
Our results indicated that we acquired a high-quality consensus reference genome. That provided valuable resources for understanding functional genomics. In addition, discovered the genetic basis of sika-red hybrid fertility and identified 607 significant TFs that impact antler development.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>38890595</pmid><doi>10.1186/s12864-024-10522-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2024-06, Vol.25 (1), p.617-13, Article 617 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a836b0418dde4b0cac882dc872af43d8 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Animals Antler development Antlers - growth & development Antlers - metabolism Cbfa-1 protein Cervus elaphus Cervus nippon Chromosome evolution Chromosomes Comparative analysis Consensus genome Conserved sequence Deer Deer - genetics Deer - growth & development DNA binding proteins Evolution Evolutionary genetics Fertility Gene expression Gene Expression Profiling Gene regulation Genes Genome Genomes Genomic analysis Genomics Genomics - methods Haplotypes Kinases Male Nucleotide sequence Pax8 protein Proteins Sika deer SIX gene family Sox9 protein TFs Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Transcriptome Transcriptomes |
title | A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20consensus%20genome%20of%20sika%20deer%20(Cervus%20nippon)%20and%20transcriptome%20analysis%20provided%20novel%20insights%20on%20the%20regulation%20mechanism%20of%20transcript%20factor%20in%20antler%20development&rft.jtitle=BMC%20genomics&rft.au=Wang,%20Qianghui&rft.date=2024-06-19&rft.volume=25&rft.issue=1&rft.spage=617&rft.epage=13&rft.pages=617-13&rft.artnum=617&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-024-10522-9&rft_dat=%3Cgale_doaj_%3EA798233086%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-63530f203feb54b866bc80b334a88a720e00c11cbb4a16e3ccb80bde264c87d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079182368&rft_id=info:pmid/38890595&rft_galeid=A798233086&rfr_iscdi=true |