Loading…

A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development

Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an app...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2024-06, Vol.25 (1), p.617-13, Article 617
Main Authors: Wang, Qianghui, Han, Ruobing, Xing, Haihua, Li, Heping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c479t-63530f203feb54b866bc80b334a88a720e00c11cbb4a16e3ccb80bde264c87d93
container_end_page 13
container_issue 1
container_start_page 617
container_title BMC genomics
container_volume 25
creator Wang, Qianghui
Han, Ruobing
Xing, Haihua
Li, Heping
description Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an appropriate reference genome. Thus, obtaining a high-quality reference genome is imperative to delve into functional genomics effectively. Here we report a high-quality consensus genome of male sika deer. All 34 chromosomes are assembled into single-contig pseudomolecules without any gaps, which is the most complete assembly. The genome size is 2.7G with 23,284 protein-coding genes. Comparative genomics analysis found that the genomes of sika deer and red deer are highly conserved, an approximately 2.4G collinear regions with up to 99% sequence similarity. Meanwhile, we observed the fusion of red deer's Chr23 and Chr4 during evolution, forming sika deer's Chr1. Additionally, we identified 607 transcription factors (TFs) that are involved in the regulation of antler development, including RUNX2, SOX6, SOX8, SOX9, PAX8, SIX2, SIX4, SIX6, SPI1, NFAC1, KLHL8, ZN710, JDP2, and TWST2, based on this consensus reference genome. Our results indicated that we acquired a high-quality consensus reference genome. That provided valuable resources for understanding functional genomics. In addition, discovered the genetic basis of sika-red hybrid fertility and identified 607 significant TFs that impact antler development.
doi_str_mv 10.1186/s12864-024-10522-9
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a836b0418dde4b0cac882dc872af43d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A798233086</galeid><doaj_id>oai_doaj_org_article_a836b0418dde4b0cac882dc872af43d8</doaj_id><sourcerecordid>A798233086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-63530f203feb54b866bc80b334a88a720e00c11cbb4a16e3ccb80bde264c87d93</originalsourceid><addsrcrecordid>eNptkktv1DAQgCMEoqXwBzggS1zaQ4ofeTgntFrxWKkSEo-z5diTrEtiB9tZtT-Jf4mzW9ouQjkk8XzzjcYzWfaa4EtCePUuEMqrIse0yAkuKc2bJ9kpKWqSU1IVTx99n2QvQrjGmNScls-zE8Z5g8umPM1-r5ByNoANc0A9WDcCch0K5qdEGsCj8zX4XYpZM03OXiBpNYpe2qC8meKCSyuH22ACmrzbGQ0aWbeDARkbTL-NATmL4haQh34eZDTpdwS1ldaEcan1YEOdVNH5lJmkcUjVNSSTm0aw8WX2rJNDgFd377Psx8cP39ef86svnzbr1VWuirqJecVKhjuKWQdtWbS8qlrFcctYITmXNcWAsSJEtW0hSQVMqTaFNdCqULzWDTvLNgevdvJaTN6M0t8KJ43YHzjfC-mjUQMIyVnV4oJwraFosZKKc6qThsquYJon1_uDa5rbEbRKbXg5HEmPI9ZsRe92giwDJuViOL8zePdrhhDFaIKCYZAW3BwEwzWum5rVJKFv_0Gv3ezTcPZUQzhlFX-gepk6MLZzqbBapGJVN4lhmFeJuvwPlR4No0kLA51J50cJF0cJiYlwE3s5hyA2374es_TAKu9C8NDdXwjBYmlcHDZbpM0W-80Wy1jePL7K-5S_q8z-AAh_9j8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079182368</pqid></control><display><type>article</type><title>A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Qianghui ; Han, Ruobing ; Xing, Haihua ; Li, Heping</creator><creatorcontrib>Wang, Qianghui ; Han, Ruobing ; Xing, Haihua ; Li, Heping</creatorcontrib><description>Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an appropriate reference genome. Thus, obtaining a high-quality reference genome is imperative to delve into functional genomics effectively. Here we report a high-quality consensus genome of male sika deer. All 34 chromosomes are assembled into single-contig pseudomolecules without any gaps, which is the most complete assembly. The genome size is 2.7G with 23,284 protein-coding genes. Comparative genomics analysis found that the genomes of sika deer and red deer are highly conserved, an approximately 2.4G collinear regions with up to 99% sequence similarity. Meanwhile, we observed the fusion of red deer's Chr23 and Chr4 during evolution, forming sika deer's Chr1. Additionally, we identified 607 transcription factors (TFs) that are involved in the regulation of antler development, including RUNX2, SOX6, SOX8, SOX9, PAX8, SIX2, SIX4, SIX6, SPI1, NFAC1, KLHL8, ZN710, JDP2, and TWST2, based on this consensus reference genome. Our results indicated that we acquired a high-quality consensus reference genome. That provided valuable resources for understanding functional genomics. In addition, discovered the genetic basis of sika-red hybrid fertility and identified 607 significant TFs that impact antler development.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-024-10522-9</identifier><identifier>PMID: 38890595</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accuracy ; Animals ; Antler development ; Antlers - growth &amp; development ; Antlers - metabolism ; Cbfa-1 protein ; Cervus elaphus ; Cervus nippon ; Chromosome evolution ; Chromosomes ; Comparative analysis ; Consensus genome ; Conserved sequence ; Deer ; Deer - genetics ; Deer - growth &amp; development ; DNA binding proteins ; Evolution ; Evolutionary genetics ; Fertility ; Gene expression ; Gene Expression Profiling ; Gene regulation ; Genes ; Genome ; Genomes ; Genomic analysis ; Genomics ; Genomics - methods ; Haplotypes ; Kinases ; Male ; Nucleotide sequence ; Pax8 protein ; Proteins ; Sika deer ; SIX gene family ; Sox9 protein ; TFs ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptome ; Transcriptomes</subject><ispartof>BMC genomics, 2024-06, Vol.25 (1), p.617-13, Article 617</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-63530f203feb54b866bc80b334a88a720e00c11cbb4a16e3ccb80bde264c87d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186158/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3079182368?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38890595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qianghui</creatorcontrib><creatorcontrib>Han, Ruobing</creatorcontrib><creatorcontrib>Xing, Haihua</creatorcontrib><creatorcontrib>Li, Heping</creatorcontrib><title>A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an appropriate reference genome. Thus, obtaining a high-quality reference genome is imperative to delve into functional genomics effectively. Here we report a high-quality consensus genome of male sika deer. All 34 chromosomes are assembled into single-contig pseudomolecules without any gaps, which is the most complete assembly. The genome size is 2.7G with 23,284 protein-coding genes. Comparative genomics analysis found that the genomes of sika deer and red deer are highly conserved, an approximately 2.4G collinear regions with up to 99% sequence similarity. Meanwhile, we observed the fusion of red deer's Chr23 and Chr4 during evolution, forming sika deer's Chr1. Additionally, we identified 607 transcription factors (TFs) that are involved in the regulation of antler development, including RUNX2, SOX6, SOX8, SOX9, PAX8, SIX2, SIX4, SIX6, SPI1, NFAC1, KLHL8, ZN710, JDP2, and TWST2, based on this consensus reference genome. Our results indicated that we acquired a high-quality consensus reference genome. That provided valuable resources for understanding functional genomics. In addition, discovered the genetic basis of sika-red hybrid fertility and identified 607 significant TFs that impact antler development.</description><subject>Accuracy</subject><subject>Animals</subject><subject>Antler development</subject><subject>Antlers - growth &amp; development</subject><subject>Antlers - metabolism</subject><subject>Cbfa-1 protein</subject><subject>Cervus elaphus</subject><subject>Cervus nippon</subject><subject>Chromosome evolution</subject><subject>Chromosomes</subject><subject>Comparative analysis</subject><subject>Consensus genome</subject><subject>Conserved sequence</subject><subject>Deer</subject><subject>Deer - genetics</subject><subject>Deer - growth &amp; development</subject><subject>DNA binding proteins</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Fertility</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Haplotypes</subject><subject>Kinases</subject><subject>Male</subject><subject>Nucleotide sequence</subject><subject>Pax8 protein</subject><subject>Proteins</subject><subject>Sika deer</subject><subject>SIX gene family</subject><subject>Sox9 protein</subject><subject>TFs</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAQgCMEoqXwBzggS1zaQ4ofeTgntFrxWKkSEo-z5diTrEtiB9tZtT-Jf4mzW9ouQjkk8XzzjcYzWfaa4EtCePUuEMqrIse0yAkuKc2bJ9kpKWqSU1IVTx99n2QvQrjGmNScls-zE8Z5g8umPM1-r5ByNoANc0A9WDcCch0K5qdEGsCj8zX4XYpZM03OXiBpNYpe2qC8meKCSyuH22ACmrzbGQ0aWbeDARkbTL-NATmL4haQh34eZDTpdwS1ldaEcan1YEOdVNH5lJmkcUjVNSSTm0aw8WX2rJNDgFd377Psx8cP39ef86svnzbr1VWuirqJecVKhjuKWQdtWbS8qlrFcctYITmXNcWAsSJEtW0hSQVMqTaFNdCqULzWDTvLNgevdvJaTN6M0t8KJ43YHzjfC-mjUQMIyVnV4oJwraFosZKKc6qThsquYJon1_uDa5rbEbRKbXg5HEmPI9ZsRe92giwDJuViOL8zePdrhhDFaIKCYZAW3BwEwzWum5rVJKFv_0Gv3ezTcPZUQzhlFX-gepk6MLZzqbBapGJVN4lhmFeJuvwPlR4No0kLA51J50cJF0cJiYlwE3s5hyA2374es_TAKu9C8NDdXwjBYmlcHDZbpM0W-80Wy1jePL7K-5S_q8z-AAh_9j8</recordid><startdate>20240619</startdate><enddate>20240619</enddate><creator>Wang, Qianghui</creator><creator>Han, Ruobing</creator><creator>Xing, Haihua</creator><creator>Li, Heping</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240619</creationdate><title>A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development</title><author>Wang, Qianghui ; Han, Ruobing ; Xing, Haihua ; Li, Heping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-63530f203feb54b866bc80b334a88a720e00c11cbb4a16e3ccb80bde264c87d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Animals</topic><topic>Antler development</topic><topic>Antlers - growth &amp; development</topic><topic>Antlers - metabolism</topic><topic>Cbfa-1 protein</topic><topic>Cervus elaphus</topic><topic>Cervus nippon</topic><topic>Chromosome evolution</topic><topic>Chromosomes</topic><topic>Comparative analysis</topic><topic>Consensus genome</topic><topic>Conserved sequence</topic><topic>Deer</topic><topic>Deer - genetics</topic><topic>Deer - growth &amp; development</topic><topic>DNA binding proteins</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Fertility</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Haplotypes</topic><topic>Kinases</topic><topic>Male</topic><topic>Nucleotide sequence</topic><topic>Pax8 protein</topic><topic>Proteins</topic><topic>Sika deer</topic><topic>SIX gene family</topic><topic>Sox9 protein</topic><topic>TFs</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qianghui</creatorcontrib><creatorcontrib>Han, Ruobing</creatorcontrib><creatorcontrib>Xing, Haihua</creatorcontrib><creatorcontrib>Li, Heping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qianghui</au><au>Han, Ruobing</au><au>Xing, Haihua</au><au>Li, Heping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2024-06-19</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>617</spage><epage>13</epage><pages>617-13</pages><artnum>617</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an appropriate reference genome. Thus, obtaining a high-quality reference genome is imperative to delve into functional genomics effectively. Here we report a high-quality consensus genome of male sika deer. All 34 chromosomes are assembled into single-contig pseudomolecules without any gaps, which is the most complete assembly. The genome size is 2.7G with 23,284 protein-coding genes. Comparative genomics analysis found that the genomes of sika deer and red deer are highly conserved, an approximately 2.4G collinear regions with up to 99% sequence similarity. Meanwhile, we observed the fusion of red deer's Chr23 and Chr4 during evolution, forming sika deer's Chr1. Additionally, we identified 607 transcription factors (TFs) that are involved in the regulation of antler development, including RUNX2, SOX6, SOX8, SOX9, PAX8, SIX2, SIX4, SIX6, SPI1, NFAC1, KLHL8, ZN710, JDP2, and TWST2, based on this consensus reference genome. Our results indicated that we acquired a high-quality consensus reference genome. That provided valuable resources for understanding functional genomics. In addition, discovered the genetic basis of sika-red hybrid fertility and identified 607 significant TFs that impact antler development.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>38890595</pmid><doi>10.1186/s12864-024-10522-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2024-06, Vol.25 (1), p.617-13, Article 617
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a836b0418dde4b0cac882dc872af43d8
source Publicly Available Content Database; PubMed Central
subjects Accuracy
Animals
Antler development
Antlers - growth & development
Antlers - metabolism
Cbfa-1 protein
Cervus elaphus
Cervus nippon
Chromosome evolution
Chromosomes
Comparative analysis
Consensus genome
Conserved sequence
Deer
Deer - genetics
Deer - growth & development
DNA binding proteins
Evolution
Evolutionary genetics
Fertility
Gene expression
Gene Expression Profiling
Gene regulation
Genes
Genome
Genomes
Genomic analysis
Genomics
Genomics - methods
Haplotypes
Kinases
Male
Nucleotide sequence
Pax8 protein
Proteins
Sika deer
SIX gene family
Sox9 protein
TFs
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptome
Transcriptomes
title A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20consensus%20genome%20of%20sika%20deer%20(Cervus%20nippon)%20and%20transcriptome%20analysis%20provided%20novel%20insights%20on%20the%20regulation%20mechanism%20of%20transcript%20factor%20in%20antler%20development&rft.jtitle=BMC%20genomics&rft.au=Wang,%20Qianghui&rft.date=2024-06-19&rft.volume=25&rft.issue=1&rft.spage=617&rft.epage=13&rft.pages=617-13&rft.artnum=617&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-024-10522-9&rft_dat=%3Cgale_doaj_%3EA798233086%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-63530f203feb54b866bc80b334a88a720e00c11cbb4a16e3ccb80bde264c87d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079182368&rft_id=info:pmid/38890595&rft_galeid=A798233086&rfr_iscdi=true