Loading…

Verifiable image revision from chameleon hashes

In a digital society, the rapid development of computer science and the Internet has greatly facilitated image applications. However, one of the public network also brings risks to both image tampering and privacy exposure. Image authentication is the most important approaches to verify image integr...

Full description

Saved in:
Bibliographic Details
Published in:Cybersecurity (Singapore) 2021-10, Vol.4 (1), p.1-13, Article 34
Main Authors: Xu, Junpeng, Chen, Haixia, Yang, Xu, Wu, Wei, Song, Yongcheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a digital society, the rapid development of computer science and the Internet has greatly facilitated image applications. However, one of the public network also brings risks to both image tampering and privacy exposure. Image authentication is the most important approaches to verify image integrity and authenticity. However, it has been challenging for image authentication to address both issues of tampering detection and privacy protection. One aspect, image authentication requires image contents not be changed to detect tampering. The other, privacy protection needs to remove sensitive information from images, and as a result, the contents should be changed. In this paper, we propose a practical image authentication scheme constructed from chameleon hashes combined with ordinary digital signatures to make tradeoff between tampering detection and privacy protection. Our scheme allows legitimate users to modify contents of authenticated images with a privacy-aware purpose (for example, cover some sensitive areas with mosaics) according to specific rules and verify the authenticity without interaction with the original authenticator. The security of our scheme is guaranteed by the security of the underlying cryptographic primitives. Experiment results show that our scheme is efficient and practical. We believe that our work will facilitate image applications where both authentication and privacy protection are desirable.
ISSN:2523-3246
2523-3246
DOI:10.1186/s42400-021-00097-3