Loading…

In Vivo and In Vitro Characterization of the RNA Binding Capacity of SETD1A (KMT2F)

For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of the H3K4 residue,...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-11, Vol.24 (22), p.16032
Main Authors: Amin, Harem Muhamad, Szabo, Beata, Abukhairan, Rawan, Zeke, Andras, Kardos, József, Schad, Eva, Tantos, Agnes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c426t-f4611f1ebb74f159990ca9c6afba3e9ff0dedab9815564e777a4cacf78c84a623
container_end_page
container_issue 22
container_start_page 16032
container_title International journal of molecular sciences
container_volume 24
creator Amin, Harem Muhamad
Szabo, Beata
Abukhairan, Rawan
Zeke, Andras
Kardos, József
Schad, Eva
Tantos, Agnes
description For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of the H3K4 residue, two—SETD1A and SETD1B—contain RNA recognition domains (RRMs). Here we investigated the RNA binding capacity of SETD1A and identified a broad range of interacting RNAs within HEK293T cells. Our analysis revealed that similar to yeast Set1, SETD1A is also capable of binding several coding and non-coding RNAs, including RNA species related to RNA processing. We also show direct RNA binding activity of the individual RRM domain in vitro, which is in contrast with the RRM domain found in yeast Set1. Structural modeling revealed important details on the possible RNA recognition mode of SETD1A and highlighted some fundamental differences between SETD1A and Set1, explaining the differences in the RNA binding capacity of their respective RRMs.
doi_str_mv 10.3390/ijms242216032
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a8770e40b44249f9883886585245d351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774321107</galeid><doaj_id>oai_doaj_org_article_a8770e40b44249f9883886585245d351</doaj_id><sourcerecordid>A774321107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f4611f1ebb74f159990ca9c6afba3e9ff0dedab9815564e777a4cacf78c84a623</originalsourceid><addsrcrecordid>eNptkk1vEzEQhleISpTCkbslLuWwrb8_jiG0NGoLEg1crVmvnTpK1sF2kMqvZ5OgQhHywa9mnnlHM5qmeUPwGWMGn8flulBOKZGY0WfNMRl1i7FUz__SL5qXpSwxpowKc9zczQb0Lf5ICIYe7XXNCU3vIYOrPsefUGMaUAqo3nv05dMEvY9DH4cFmsIGXKwPu9zdxfwDmaDT69s5vXz3qjkKsCr-9e__pPl6eTGfXrU3nz_OppOb1nEqaxu4JCQQ33WKByKMMdiBcRJCB8ybEHDve-iMJkJI7pVSwB24oLTTHCRlJ83s4NsnWNpNjmvIDzZBtPtAygsLuUa38ha0Uthz3HFOuQlGa6a1FFpQLnomyOh1evDa5PR960u161icX61g8GlbLNWGac4JFyP69h90mbZ5GCfdU1gJadQfagFj_ziEVMeV7kztRCnOKCF4R539hxpf79fRpcGHOMafFLSHApdTKdmHx7kJtrsrsE-ugP0C8N-e6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893075697</pqid></control><display><type>article</type><title>In Vivo and In Vitro Characterization of the RNA Binding Capacity of SETD1A (KMT2F)</title><source>PubMed Central</source><source>ProQuest Publicly Available Content database</source><creator>Amin, Harem Muhamad ; Szabo, Beata ; Abukhairan, Rawan ; Zeke, Andras ; Kardos, József ; Schad, Eva ; Tantos, Agnes</creator><creatorcontrib>Amin, Harem Muhamad ; Szabo, Beata ; Abukhairan, Rawan ; Zeke, Andras ; Kardos, József ; Schad, Eva ; Tantos, Agnes</creatorcontrib><description>For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of the H3K4 residue, two—SETD1A and SETD1B—contain RNA recognition domains (RRMs). Here we investigated the RNA binding capacity of SETD1A and identified a broad range of interacting RNAs within HEK293T cells. Our analysis revealed that similar to yeast Set1, SETD1A is also capable of binding several coding and non-coding RNAs, including RNA species related to RNA processing. We also show direct RNA binding activity of the individual RRM domain in vitro, which is in contrast with the RRM domain found in yeast Set1. Structural modeling revealed important details on the possible RNA recognition mode of SETD1A and highlighted some fundamental differences between SETD1A and Set1, explaining the differences in the RNA binding capacity of their respective RRMs.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms242216032</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Datasets ; DNA damage ; DNA methylation ; Enzymes ; Experiments ; Genes ; histone lysine methyltransferase ; Insects ; KMT2F ; Lysine ; Methylation ; Methyltransferases ; Mutation ; non-coding RNA ; Pharmaceutical industry ; Proteins ; RNA ; RNA binding ; RRM domain ; Schizophrenia ; Scientific equipment and supplies industry ; SETD1A ; Stem cells</subject><ispartof>International journal of molecular sciences, 2023-11, Vol.24 (22), p.16032</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-f4611f1ebb74f159990ca9c6afba3e9ff0dedab9815564e777a4cacf78c84a623</cites><orcidid>0000-0002-3006-2910 ; 0000-0003-1273-9841 ; 0000-0002-2135-2932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2893075697/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2893075697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Amin, Harem Muhamad</creatorcontrib><creatorcontrib>Szabo, Beata</creatorcontrib><creatorcontrib>Abukhairan, Rawan</creatorcontrib><creatorcontrib>Zeke, Andras</creatorcontrib><creatorcontrib>Kardos, József</creatorcontrib><creatorcontrib>Schad, Eva</creatorcontrib><creatorcontrib>Tantos, Agnes</creatorcontrib><title>In Vivo and In Vitro Characterization of the RNA Binding Capacity of SETD1A (KMT2F)</title><title>International journal of molecular sciences</title><description>For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of the H3K4 residue, two—SETD1A and SETD1B—contain RNA recognition domains (RRMs). Here we investigated the RNA binding capacity of SETD1A and identified a broad range of interacting RNAs within HEK293T cells. Our analysis revealed that similar to yeast Set1, SETD1A is also capable of binding several coding and non-coding RNAs, including RNA species related to RNA processing. We also show direct RNA binding activity of the individual RRM domain in vitro, which is in contrast with the RRM domain found in yeast Set1. Structural modeling revealed important details on the possible RNA recognition mode of SETD1A and highlighted some fundamental differences between SETD1A and Set1, explaining the differences in the RNA binding capacity of their respective RRMs.</description><subject>Analysis</subject><subject>Datasets</subject><subject>DNA damage</subject><subject>DNA methylation</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Genes</subject><subject>histone lysine methyltransferase</subject><subject>Insects</subject><subject>KMT2F</subject><subject>Lysine</subject><subject>Methylation</subject><subject>Methyltransferases</subject><subject>Mutation</subject><subject>non-coding RNA</subject><subject>Pharmaceutical industry</subject><subject>Proteins</subject><subject>RNA</subject><subject>RNA binding</subject><subject>RRM domain</subject><subject>Schizophrenia</subject><subject>Scientific equipment and supplies industry</subject><subject>SETD1A</subject><subject>Stem cells</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1vEzEQhleISpTCkbslLuWwrb8_jiG0NGoLEg1crVmvnTpK1sF2kMqvZ5OgQhHywa9mnnlHM5qmeUPwGWMGn8flulBOKZGY0WfNMRl1i7FUz__SL5qXpSwxpowKc9zczQb0Lf5ICIYe7XXNCU3vIYOrPsefUGMaUAqo3nv05dMEvY9DH4cFmsIGXKwPu9zdxfwDmaDT69s5vXz3qjkKsCr-9e__pPl6eTGfXrU3nz_OppOb1nEqaxu4JCQQ33WKByKMMdiBcRJCB8ybEHDve-iMJkJI7pVSwB24oLTTHCRlJ83s4NsnWNpNjmvIDzZBtPtAygsLuUa38ha0Uthz3HFOuQlGa6a1FFpQLnomyOh1evDa5PR960u161icX61g8GlbLNWGac4JFyP69h90mbZ5GCfdU1gJadQfagFj_ziEVMeV7kztRCnOKCF4R539hxpf79fRpcGHOMafFLSHApdTKdmHx7kJtrsrsE-ugP0C8N-e6Q</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Amin, Harem Muhamad</creator><creator>Szabo, Beata</creator><creator>Abukhairan, Rawan</creator><creator>Zeke, Andras</creator><creator>Kardos, József</creator><creator>Schad, Eva</creator><creator>Tantos, Agnes</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3006-2910</orcidid><orcidid>https://orcid.org/0000-0003-1273-9841</orcidid><orcidid>https://orcid.org/0000-0002-2135-2932</orcidid></search><sort><creationdate>20231101</creationdate><title>In Vivo and In Vitro Characterization of the RNA Binding Capacity of SETD1A (KMT2F)</title><author>Amin, Harem Muhamad ; Szabo, Beata ; Abukhairan, Rawan ; Zeke, Andras ; Kardos, József ; Schad, Eva ; Tantos, Agnes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f4611f1ebb74f159990ca9c6afba3e9ff0dedab9815564e777a4cacf78c84a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Datasets</topic><topic>DNA damage</topic><topic>DNA methylation</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Genes</topic><topic>histone lysine methyltransferase</topic><topic>Insects</topic><topic>KMT2F</topic><topic>Lysine</topic><topic>Methylation</topic><topic>Methyltransferases</topic><topic>Mutation</topic><topic>non-coding RNA</topic><topic>Pharmaceutical industry</topic><topic>Proteins</topic><topic>RNA</topic><topic>RNA binding</topic><topic>RRM domain</topic><topic>Schizophrenia</topic><topic>Scientific equipment and supplies industry</topic><topic>SETD1A</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Harem Muhamad</creatorcontrib><creatorcontrib>Szabo, Beata</creatorcontrib><creatorcontrib>Abukhairan, Rawan</creatorcontrib><creatorcontrib>Zeke, Andras</creatorcontrib><creatorcontrib>Kardos, József</creatorcontrib><creatorcontrib>Schad, Eva</creatorcontrib><creatorcontrib>Tantos, Agnes</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Harem Muhamad</au><au>Szabo, Beata</au><au>Abukhairan, Rawan</au><au>Zeke, Andras</au><au>Kardos, József</au><au>Schad, Eva</au><au>Tantos, Agnes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo and In Vitro Characterization of the RNA Binding Capacity of SETD1A (KMT2F)</atitle><jtitle>International journal of molecular sciences</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>24</volume><issue>22</issue><spage>16032</spage><pages>16032-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of the H3K4 residue, two—SETD1A and SETD1B—contain RNA recognition domains (RRMs). Here we investigated the RNA binding capacity of SETD1A and identified a broad range of interacting RNAs within HEK293T cells. Our analysis revealed that similar to yeast Set1, SETD1A is also capable of binding several coding and non-coding RNAs, including RNA species related to RNA processing. We also show direct RNA binding activity of the individual RRM domain in vitro, which is in contrast with the RRM domain found in yeast Set1. Structural modeling revealed important details on the possible RNA recognition mode of SETD1A and highlighted some fundamental differences between SETD1A and Set1, explaining the differences in the RNA binding capacity of their respective RRMs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijms242216032</doi><orcidid>https://orcid.org/0000-0002-3006-2910</orcidid><orcidid>https://orcid.org/0000-0003-1273-9841</orcidid><orcidid>https://orcid.org/0000-0002-2135-2932</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2023-11, Vol.24 (22), p.16032
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a8770e40b44249f9883886585245d351
source PubMed Central; ProQuest Publicly Available Content database
subjects Analysis
Datasets
DNA damage
DNA methylation
Enzymes
Experiments
Genes
histone lysine methyltransferase
Insects
KMT2F
Lysine
Methylation
Methyltransferases
Mutation
non-coding RNA
Pharmaceutical industry
Proteins
RNA
RNA binding
RRM domain
Schizophrenia
Scientific equipment and supplies industry
SETD1A
Stem cells
title In Vivo and In Vitro Characterization of the RNA Binding Capacity of SETD1A (KMT2F)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20and%20In%20Vitro%20Characterization%20of%20the%20RNA%20Binding%20Capacity%20of%20SETD1A%20(KMT2F)&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Amin,%20Harem%20Muhamad&rft.date=2023-11-01&rft.volume=24&rft.issue=22&rft.spage=16032&rft.pages=16032-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms242216032&rft_dat=%3Cgale_doaj_%3EA774321107%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-f4611f1ebb74f159990ca9c6afba3e9ff0dedab9815564e777a4cacf78c84a623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893075697&rft_id=info:pmid/&rft_galeid=A774321107&rfr_iscdi=true