Loading…
Bayesian Regularized Neural Network for Prediction of the Dose in Gamma Irradiated Milk Products
Gamma irradiation is a well-known method for sterilizing different foodstuffs, including fresh cow milk. Many studies witness that the low dose irradiation of milk and milk products affects the fractions of the milk protein, thus reducing its allergenic effect and make it potentially appropriate for...
Saved in:
Published in: | Cybernetics and information technologies : CIT 2020-06, Vol.20 (2), p.141-151 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gamma irradiation is a well-known method for sterilizing different foodstuffs, including fresh cow milk. Many studies witness that the low dose irradiation of milk and milk products affects the fractions of the milk protein, thus reducing its allergenic effect and make it potentially appropriate for people with milk allergy. The purpose of this study is to evaluate the relationship between the gamma radiation dose and size of the protein fractions, as potential approach to decrease the allergenic effect of the milk. In this paper, an approach for prediction of the dose in gamma irradiated products by using a Bayesian regularized neural network as a mean to save recourses for expensive electrophoretic experiments, is developed. The efficiency of the proposed neural network model is proved on data for two dairy products – lyophilized cow milk and curd. |
---|---|
ISSN: | 1314-4081 1314-4081 |
DOI: | 10.2478/cait-2020-0022 |