Loading…
Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator
Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists...
Saved in:
Published in: | Physical review. X 2018-03, Vol.8 (1), p.011038, Article 011038 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53 |
---|---|
cites | cdi_FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53 |
container_end_page | |
container_issue | 1 |
container_start_page | 011038 |
container_title | Physical review. X |
container_volume | 8 |
creator | Gorman, Dylan J Hemmerling, Boerge Megidish, Eli Moeller, Soenke A. Schindler, Philipp Sarovar, Mohan Haeffner, Hartmut |
description | Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations. |
doi_str_mv | 10.1103/PhysRevX.8.011038 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a88a88d4ce084c9ba7db918227cb78dd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a88a88d4ce084c9ba7db918227cb78dd</doaj_id><sourcerecordid>2550611467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53</originalsourceid><addsrcrecordid>eNpNUdtq3DAQNaWBhCQfkDfTPnuri3XxYwjbZiHQS5LSNzGWxhstXmkryYH9-3rrtnQYmJkzh8Mwp6puKFlRSviHLy_H_A1ff6z0ipwA_aa6YFSShnOi3_7Xn1fXOe_IHJLQVqmL6nkdtj4gJh-29XffJyg-BhjHY32bs88FXb0OmLbH-ilByAOm2ocaTtPhgK7ZxFB_nSCUaV8_-v00QonpqjobYMx4_adeVs8f1093983D50-bu9uHxgrGSyOVlmKQAjnHXnWE8M5yoTrQgELNWy4osE60EizrlCDOMd73_UAl7wYn-GW1WXRdhJ05JL-HdDQRvPkNxLQ1kIq3IxrQek7XWiS6tV0PyvUd1Ywp2yvt3Kz1btGKuXiTrS9oX2wMAW0xtGWt4GomvV9IhxR_TpiL2cUpzf_KhglBJKWtPLHowrIp5pxw-HcaJeZkkPnrmNFmcYz_AvI5iYY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550611467</pqid></control><display><type>article</type><title>Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator</title><source>Publicly Available Content Database</source><creator>Gorman, Dylan J ; Hemmerling, Boerge ; Megidish, Eli ; Moeller, Soenke A. ; Schindler, Philipp ; Sarovar, Mohan ; Haeffner, Hartmut</creator><creatorcontrib>Gorman, Dylan J ; Hemmerling, Boerge ; Megidish, Eli ; Moeller, Soenke A. ; Schindler, Philipp ; Sarovar, Mohan ; Haeffner, Hartmut ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.8.011038</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Approximation ; Biochemistry ; Biological activity ; Charge transfer ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Complexity ; Coupling (molecular) ; Dynamic structural analysis ; Dynamics ; Electron states ; Energy ; Energy transfer ; Mathematical models ; Parameters ; Photosynthesis ; Pigments ; Robustness (mathematics) ; Simulation ; Thermal environments ; Transport processes</subject><ispartof>Physical review. X, 2018-03, Vol.8 (1), p.011038, Article 011038</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53</citedby><cites>FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550611467?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1424537$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorman, Dylan J</creatorcontrib><creatorcontrib>Hemmerling, Boerge</creatorcontrib><creatorcontrib>Megidish, Eli</creatorcontrib><creatorcontrib>Moeller, Soenke A.</creatorcontrib><creatorcontrib>Schindler, Philipp</creatorcontrib><creatorcontrib>Sarovar, Mohan</creatorcontrib><creatorcontrib>Haeffner, Hartmut</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator</title><title>Physical review. X</title><description>Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.</description><subject>Approximation</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Charge transfer</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Complexity</subject><subject>Coupling (molecular)</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Electron states</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Photosynthesis</subject><subject>Pigments</subject><subject>Robustness (mathematics)</subject><subject>Simulation</subject><subject>Thermal environments</subject><subject>Transport processes</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtq3DAQNaWBhCQfkDfTPnuri3XxYwjbZiHQS5LSNzGWxhstXmkryYH9-3rrtnQYmJkzh8Mwp6puKFlRSviHLy_H_A1ff6z0ipwA_aa6YFSShnOi3_7Xn1fXOe_IHJLQVqmL6nkdtj4gJh-29XffJyg-BhjHY32bs88FXb0OmLbH-ilByAOm2ocaTtPhgK7ZxFB_nSCUaV8_-v00QonpqjobYMx4_adeVs8f1093983D50-bu9uHxgrGSyOVlmKQAjnHXnWE8M5yoTrQgELNWy4osE60EizrlCDOMd73_UAl7wYn-GW1WXRdhJ05JL-HdDQRvPkNxLQ1kIq3IxrQek7XWiS6tV0PyvUd1Ywp2yvt3Kz1btGKuXiTrS9oX2wMAW0xtGWt4GomvV9IhxR_TpiL2cUpzf_KhglBJKWtPLHowrIp5pxw-HcaJeZkkPnrmNFmcYz_AvI5iYY</recordid><startdate>20180307</startdate><enddate>20180307</enddate><creator>Gorman, Dylan J</creator><creator>Hemmerling, Boerge</creator><creator>Megidish, Eli</creator><creator>Moeller, Soenke A.</creator><creator>Schindler, Philipp</creator><creator>Sarovar, Mohan</creator><creator>Haeffner, Hartmut</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20180307</creationdate><title>Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator</title><author>Gorman, Dylan J ; Hemmerling, Boerge ; Megidish, Eli ; Moeller, Soenke A. ; Schindler, Philipp ; Sarovar, Mohan ; Haeffner, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Charge transfer</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Complexity</topic><topic>Coupling (molecular)</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Electron states</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Photosynthesis</topic><topic>Pigments</topic><topic>Robustness (mathematics)</topic><topic>Simulation</topic><topic>Thermal environments</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorman, Dylan J</creatorcontrib><creatorcontrib>Hemmerling, Boerge</creatorcontrib><creatorcontrib>Megidish, Eli</creatorcontrib><creatorcontrib>Moeller, Soenke A.</creatorcontrib><creatorcontrib>Schindler, Philipp</creatorcontrib><creatorcontrib>Sarovar, Mohan</creatorcontrib><creatorcontrib>Haeffner, Hartmut</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorman, Dylan J</au><au>Hemmerling, Boerge</au><au>Megidish, Eli</au><au>Moeller, Soenke A.</au><au>Schindler, Philipp</au><au>Sarovar, Mohan</au><au>Haeffner, Hartmut</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator</atitle><jtitle>Physical review. X</jtitle><date>2018-03-07</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>011038</spage><pages>011038-</pages><artnum>011038</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.8.011038</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-3308 |
ispartof | Physical review. X, 2018-03, Vol.8 (1), p.011038, Article 011038 |
issn | 2160-3308 2160-3308 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a88a88d4ce084c9ba7db918227cb78dd |
source | Publicly Available Content Database |
subjects | Approximation Biochemistry Biological activity Charge transfer CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Complexity Coupling (molecular) Dynamic structural analysis Dynamics Electron states Energy Energy transfer Mathematical models Parameters Photosynthesis Pigments Robustness (mathematics) Simulation Thermal environments Transport processes |
title | Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Vibrationally%20Assisted%20Energy%20Transfer%20in%20a%20Trapped-Ion%20Quantum%20Simulator&rft.jtitle=Physical%20review.%20X&rft.au=Gorman,%20Dylan%20J&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2018-03-07&rft.volume=8&rft.issue=1&rft.spage=011038&rft.pages=011038-&rft.artnum=011038&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.8.011038&rft_dat=%3Cproquest_doaj_%3E2550611467%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550611467&rft_id=info:pmid/&rfr_iscdi=true |