Loading…

Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator

Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2018-03, Vol.8 (1), p.011038, Article 011038
Main Authors: Gorman, Dylan J, Hemmerling, Boerge, Megidish, Eli, Moeller, Soenke A., Schindler, Philipp, Sarovar, Mohan, Haeffner, Hartmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53
cites cdi_FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53
container_end_page
container_issue 1
container_start_page 011038
container_title Physical review. X
container_volume 8
creator Gorman, Dylan J
Hemmerling, Boerge
Megidish, Eli
Moeller, Soenke A.
Schindler, Philipp
Sarovar, Mohan
Haeffner, Hartmut
description Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.
doi_str_mv 10.1103/PhysRevX.8.011038
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a88a88d4ce084c9ba7db918227cb78dd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a88a88d4ce084c9ba7db918227cb78dd</doaj_id><sourcerecordid>2550611467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53</originalsourceid><addsrcrecordid>eNpNUdtq3DAQNaWBhCQfkDfTPnuri3XxYwjbZiHQS5LSNzGWxhstXmkryYH9-3rrtnQYmJkzh8Mwp6puKFlRSviHLy_H_A1ff6z0ipwA_aa6YFSShnOi3_7Xn1fXOe_IHJLQVqmL6nkdtj4gJh-29XffJyg-BhjHY32bs88FXb0OmLbH-ilByAOm2ocaTtPhgK7ZxFB_nSCUaV8_-v00QonpqjobYMx4_adeVs8f1093983D50-bu9uHxgrGSyOVlmKQAjnHXnWE8M5yoTrQgELNWy4osE60EizrlCDOMd73_UAl7wYn-GW1WXRdhJ05JL-HdDQRvPkNxLQ1kIq3IxrQek7XWiS6tV0PyvUd1Ywp2yvt3Kz1btGKuXiTrS9oX2wMAW0xtGWt4GomvV9IhxR_TpiL2cUpzf_KhglBJKWtPLHowrIp5pxw-HcaJeZkkPnrmNFmcYz_AvI5iYY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550611467</pqid></control><display><type>article</type><title>Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator</title><source>Publicly Available Content Database</source><creator>Gorman, Dylan J ; Hemmerling, Boerge ; Megidish, Eli ; Moeller, Soenke A. ; Schindler, Philipp ; Sarovar, Mohan ; Haeffner, Hartmut</creator><creatorcontrib>Gorman, Dylan J ; Hemmerling, Boerge ; Megidish, Eli ; Moeller, Soenke A. ; Schindler, Philipp ; Sarovar, Mohan ; Haeffner, Hartmut ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.8.011038</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Approximation ; Biochemistry ; Biological activity ; Charge transfer ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Complexity ; Coupling (molecular) ; Dynamic structural analysis ; Dynamics ; Electron states ; Energy ; Energy transfer ; Mathematical models ; Parameters ; Photosynthesis ; Pigments ; Robustness (mathematics) ; Simulation ; Thermal environments ; Transport processes</subject><ispartof>Physical review. X, 2018-03, Vol.8 (1), p.011038, Article 011038</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53</citedby><cites>FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550611467?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1424537$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorman, Dylan J</creatorcontrib><creatorcontrib>Hemmerling, Boerge</creatorcontrib><creatorcontrib>Megidish, Eli</creatorcontrib><creatorcontrib>Moeller, Soenke A.</creatorcontrib><creatorcontrib>Schindler, Philipp</creatorcontrib><creatorcontrib>Sarovar, Mohan</creatorcontrib><creatorcontrib>Haeffner, Hartmut</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator</title><title>Physical review. X</title><description>Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.</description><subject>Approximation</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Charge transfer</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Complexity</subject><subject>Coupling (molecular)</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Electron states</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Photosynthesis</subject><subject>Pigments</subject><subject>Robustness (mathematics)</subject><subject>Simulation</subject><subject>Thermal environments</subject><subject>Transport processes</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtq3DAQNaWBhCQfkDfTPnuri3XxYwjbZiHQS5LSNzGWxhstXmkryYH9-3rrtnQYmJkzh8Mwp6puKFlRSviHLy_H_A1ff6z0ipwA_aa6YFSShnOi3_7Xn1fXOe_IHJLQVqmL6nkdtj4gJh-29XffJyg-BhjHY32bs88FXb0OmLbH-ilByAOm2ocaTtPhgK7ZxFB_nSCUaV8_-v00QonpqjobYMx4_adeVs8f1093983D50-bu9uHxgrGSyOVlmKQAjnHXnWE8M5yoTrQgELNWy4osE60EizrlCDOMd73_UAl7wYn-GW1WXRdhJ05JL-HdDQRvPkNxLQ1kIq3IxrQek7XWiS6tV0PyvUd1Ywp2yvt3Kz1btGKuXiTrS9oX2wMAW0xtGWt4GomvV9IhxR_TpiL2cUpzf_KhglBJKWtPLHowrIp5pxw-HcaJeZkkPnrmNFmcYz_AvI5iYY</recordid><startdate>20180307</startdate><enddate>20180307</enddate><creator>Gorman, Dylan J</creator><creator>Hemmerling, Boerge</creator><creator>Megidish, Eli</creator><creator>Moeller, Soenke A.</creator><creator>Schindler, Philipp</creator><creator>Sarovar, Mohan</creator><creator>Haeffner, Hartmut</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20180307</creationdate><title>Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator</title><author>Gorman, Dylan J ; Hemmerling, Boerge ; Megidish, Eli ; Moeller, Soenke A. ; Schindler, Philipp ; Sarovar, Mohan ; Haeffner, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Charge transfer</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Complexity</topic><topic>Coupling (molecular)</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Electron states</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Photosynthesis</topic><topic>Pigments</topic><topic>Robustness (mathematics)</topic><topic>Simulation</topic><topic>Thermal environments</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorman, Dylan J</creatorcontrib><creatorcontrib>Hemmerling, Boerge</creatorcontrib><creatorcontrib>Megidish, Eli</creatorcontrib><creatorcontrib>Moeller, Soenke A.</creatorcontrib><creatorcontrib>Schindler, Philipp</creatorcontrib><creatorcontrib>Sarovar, Mohan</creatorcontrib><creatorcontrib>Haeffner, Hartmut</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorman, Dylan J</au><au>Hemmerling, Boerge</au><au>Megidish, Eli</au><au>Moeller, Soenke A.</au><au>Schindler, Philipp</au><au>Sarovar, Mohan</au><au>Haeffner, Hartmut</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator</atitle><jtitle>Physical review. X</jtitle><date>2018-03-07</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>011038</spage><pages>011038-</pages><artnum>011038</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.8.011038</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2018-03, Vol.8 (1), p.011038, Article 011038
issn 2160-3308
2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a88a88d4ce084c9ba7db918227cb78dd
source Publicly Available Content Database
subjects Approximation
Biochemistry
Biological activity
Charge transfer
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Complexity
Coupling (molecular)
Dynamic structural analysis
Dynamics
Electron states
Energy
Energy transfer
Mathematical models
Parameters
Photosynthesis
Pigments
Robustness (mathematics)
Simulation
Thermal environments
Transport processes
title Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Vibrationally%20Assisted%20Energy%20Transfer%20in%20a%20Trapped-Ion%20Quantum%20Simulator&rft.jtitle=Physical%20review.%20X&rft.au=Gorman,%20Dylan%20J&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2018-03-07&rft.volume=8&rft.issue=1&rft.spage=011038&rft.pages=011038-&rft.artnum=011038&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.8.011038&rft_dat=%3Cproquest_doaj_%3E2550611467%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-67865f65e33eb790039c3579a8ae57678351a29546ac29750dd23bbbf1639fd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550611467&rft_id=info:pmid/&rfr_iscdi=true