Loading…

A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations

A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.325-333-330
Main Authors: Yin, Fukang, Song, Junqiang, Cao, Xiaoqun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3
cites cdi_FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3
container_end_page 333-330
container_issue 2013
container_start_page 325
container_title Journal of Applied Mathematics
container_volume 2013
creator Yin, Fukang
Song, Junqiang
Cao, Xiaoqun
description A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple.
doi_str_mv 10.1155/2013/428079
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a8c7e1c65d374dc59d985d02c22d3ac5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160908001_201312_201609120001_201609120001_325_333_330</airiti_id><doaj_id>oai_doaj_org_article_a8c7e1c65d374dc59d985d02c22d3ac5</doaj_id><sourcerecordid>1448718178</sourcerecordid><originalsourceid>FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQQCMEEqVw4oyUI6JK68_YuVGtuu1Ki9oDBW7WrD0Gh2zcOgmIf493s9qKEwdr7Jk3z5anKN5Sck6plBeMUH4hmCaqeVac0FqrihDBnuc9paRSUn17WbwahpYQRmRDT4rby_Iae0zQlasxhzHEvlzGtJ06KKMvv6w-lT6mcpnA7mqZu0EYqxJ6V36FX1itw08srx6nfevwunjhoRvwzSGeFvfLq8-Lm2p9e71aXK4rkLIeKxAbaJRHC9JyAh5cbYH6Te2beoNSaI2KK00c0PxOp61XiN6iBslEk3tOi9XsdRFa85DCFtIfEyGYfSKm7wbSGGyHBrRVSG0tHVfC2axrtHSEWcYcByuz6-PsekixRTviZLvg_pEu7teH7CG0sDWUN2L31aTJivdHxeOEw2i2YbDYddBjnAZDhdCKaqp0Rs9m1KY4DAn98SJKzG6KZjdFM08x0x9m-kfoHfwO_4HfzTBmBD0cYaGo4HWu3811CCmMwbRxSnmig7nLlpo0RBNC90bKzJyijBxyTwfOpOGc50X4X_o4uuE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448718178</pqid></control><display><type>article</type><title>A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><source>IngentaConnect Journals</source><creator>Yin, Fukang ; Song, Junqiang ; Cao, Xiaoqun</creator><contributor>Jia, Zhongxiao</contributor><creatorcontrib>Yin, Fukang ; Song, Junqiang ; Cao, Xiaoqun ; Jia, Zhongxiao</creatorcontrib><description>A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2013/428079</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Derivatives ; Iterative methods ; Lagrange multipliers ; Laplace transforms ; Mathematical analysis</subject><ispartof>Journal of Applied Mathematics, 2013-01, Vol.2013 (2013), p.325-333-330</ispartof><rights>Copyright © 2013 Fukang Yin et al.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3</citedby><cites>FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3</cites><orcidid>0000-0002-8353-7000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,37013</link.rule.ids></links><search><contributor>Jia, Zhongxiao</contributor><creatorcontrib>Yin, Fukang</creatorcontrib><creatorcontrib>Song, Junqiang</creatorcontrib><creatorcontrib>Cao, Xiaoqun</creatorcontrib><title>A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations</title><title>Journal of Applied Mathematics</title><description>A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple.</description><subject>Derivatives</subject><subject>Iterative methods</subject><subject>Lagrange multipliers</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQQCMEEqVw4oyUI6JK68_YuVGtuu1Ki9oDBW7WrD0Gh2zcOgmIf493s9qKEwdr7Jk3z5anKN5Sck6plBeMUH4hmCaqeVac0FqrihDBnuc9paRSUn17WbwahpYQRmRDT4rby_Iae0zQlasxhzHEvlzGtJ06KKMvv6w-lT6mcpnA7mqZu0EYqxJ6V36FX1itw08srx6nfevwunjhoRvwzSGeFvfLq8-Lm2p9e71aXK4rkLIeKxAbaJRHC9JyAh5cbYH6Te2beoNSaI2KK00c0PxOp61XiN6iBslEk3tOi9XsdRFa85DCFtIfEyGYfSKm7wbSGGyHBrRVSG0tHVfC2axrtHSEWcYcByuz6-PsekixRTviZLvg_pEu7teH7CG0sDWUN2L31aTJivdHxeOEw2i2YbDYddBjnAZDhdCKaqp0Rs9m1KY4DAn98SJKzG6KZjdFM08x0x9m-kfoHfwO_4HfzTBmBD0cYaGo4HWu3811CCmMwbRxSnmig7nLlpo0RBNC90bKzJyijBxyTwfOpOGc50X4X_o4uuE</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Yin, Fukang</creator><creator>Song, Junqiang</creator><creator>Cao, Xiaoqun</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8353-7000</orcidid></search><sort><creationdate>20130101</creationdate><title>A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations</title><author>Yin, Fukang ; Song, Junqiang ; Cao, Xiaoqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Derivatives</topic><topic>Iterative methods</topic><topic>Lagrange multipliers</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Fukang</creatorcontrib><creatorcontrib>Song, Junqiang</creatorcontrib><creatorcontrib>Cao, Xiaoqun</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Fukang</au><au>Song, Junqiang</au><au>Cao, Xiaoqun</au><au>Jia, Zhongxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>325</spage><epage>333-330</epage><pages>325-333-330</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/428079</doi><orcidid>https://orcid.org/0000-0002-8353-7000</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of Applied Mathematics, 2013-01, Vol.2013 (2013), p.325-333-330
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a8c7e1c65d374dc59d985d02c22d3ac5
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access; IngentaConnect Journals
subjects Derivatives
Iterative methods
Lagrange multipliers
Laplace transforms
Mathematical analysis
title A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Iteration%20Formula%20of%20VIM%20for%20Fractional%20Heat-%20and%20Wave-Like%20Equations&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Yin,%20Fukang&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=325&rft.epage=333-330&rft.pages=325-333-330&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2013/428079&rft_dat=%3Cproquest_doaj_%3E1448718178%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1448718178&rft_id=info:pmid/&rft_airiti_id=P20160908001_201312_201609120001_201609120001_325_333_330&rfr_iscdi=true