Loading…
A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations
A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional...
Saved in:
Published in: | Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.325-333-330 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3 |
container_end_page | 333-330 |
container_issue | 2013 |
container_start_page | 325 |
container_title | Journal of Applied Mathematics |
container_volume | 2013 |
creator | Yin, Fukang Song, Junqiang Cao, Xiaoqun |
description | A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple. |
doi_str_mv | 10.1155/2013/428079 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a8c7e1c65d374dc59d985d02c22d3ac5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160908001_201312_201609120001_201609120001_325_333_330</airiti_id><doaj_id>oai_doaj_org_article_a8c7e1c65d374dc59d985d02c22d3ac5</doaj_id><sourcerecordid>1448718178</sourcerecordid><originalsourceid>FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQQCMEEqVw4oyUI6JK68_YuVGtuu1Ki9oDBW7WrD0Gh2zcOgmIf493s9qKEwdr7Jk3z5anKN5Sck6plBeMUH4hmCaqeVac0FqrihDBnuc9paRSUn17WbwahpYQRmRDT4rby_Iae0zQlasxhzHEvlzGtJ06KKMvv6w-lT6mcpnA7mqZu0EYqxJ6V36FX1itw08srx6nfevwunjhoRvwzSGeFvfLq8-Lm2p9e71aXK4rkLIeKxAbaJRHC9JyAh5cbYH6Te2beoNSaI2KK00c0PxOp61XiN6iBslEk3tOi9XsdRFa85DCFtIfEyGYfSKm7wbSGGyHBrRVSG0tHVfC2axrtHSEWcYcByuz6-PsekixRTviZLvg_pEu7teH7CG0sDWUN2L31aTJivdHxeOEw2i2YbDYddBjnAZDhdCKaqp0Rs9m1KY4DAn98SJKzG6KZjdFM08x0x9m-kfoHfwO_4HfzTBmBD0cYaGo4HWu3811CCmMwbRxSnmig7nLlpo0RBNC90bKzJyijBxyTwfOpOGc50X4X_o4uuE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448718178</pqid></control><display><type>article</type><title>A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><source>IngentaConnect Journals</source><creator>Yin, Fukang ; Song, Junqiang ; Cao, Xiaoqun</creator><contributor>Jia, Zhongxiao</contributor><creatorcontrib>Yin, Fukang ; Song, Junqiang ; Cao, Xiaoqun ; Jia, Zhongxiao</creatorcontrib><description>A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2013/428079</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Derivatives ; Iterative methods ; Lagrange multipliers ; Laplace transforms ; Mathematical analysis</subject><ispartof>Journal of Applied Mathematics, 2013-01, Vol.2013 (2013), p.325-333-330</ispartof><rights>Copyright © 2013 Fukang Yin et al.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3</citedby><cites>FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3</cites><orcidid>0000-0002-8353-7000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,37013</link.rule.ids></links><search><contributor>Jia, Zhongxiao</contributor><creatorcontrib>Yin, Fukang</creatorcontrib><creatorcontrib>Song, Junqiang</creatorcontrib><creatorcontrib>Cao, Xiaoqun</creatorcontrib><title>A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations</title><title>Journal of Applied Mathematics</title><description>A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple.</description><subject>Derivatives</subject><subject>Iterative methods</subject><subject>Lagrange multipliers</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQQCMEEqVw4oyUI6JK68_YuVGtuu1Ki9oDBW7WrD0Gh2zcOgmIf493s9qKEwdr7Jk3z5anKN5Sck6plBeMUH4hmCaqeVac0FqrihDBnuc9paRSUn17WbwahpYQRmRDT4rby_Iae0zQlasxhzHEvlzGtJ06KKMvv6w-lT6mcpnA7mqZu0EYqxJ6V36FX1itw08srx6nfevwunjhoRvwzSGeFvfLq8-Lm2p9e71aXK4rkLIeKxAbaJRHC9JyAh5cbYH6Te2beoNSaI2KK00c0PxOp61XiN6iBslEk3tOi9XsdRFa85DCFtIfEyGYfSKm7wbSGGyHBrRVSG0tHVfC2axrtHSEWcYcByuz6-PsekixRTviZLvg_pEu7teH7CG0sDWUN2L31aTJivdHxeOEw2i2YbDYddBjnAZDhdCKaqp0Rs9m1KY4DAn98SJKzG6KZjdFM08x0x9m-kfoHfwO_4HfzTBmBD0cYaGo4HWu3811CCmMwbRxSnmig7nLlpo0RBNC90bKzJyijBxyTwfOpOGc50X4X_o4uuE</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Yin, Fukang</creator><creator>Song, Junqiang</creator><creator>Cao, Xiaoqun</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8353-7000</orcidid></search><sort><creationdate>20130101</creationdate><title>A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations</title><author>Yin, Fukang ; Song, Junqiang ; Cao, Xiaoqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Derivatives</topic><topic>Iterative methods</topic><topic>Lagrange multipliers</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Fukang</creatorcontrib><creatorcontrib>Song, Junqiang</creatorcontrib><creatorcontrib>Cao, Xiaoqun</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Fukang</au><au>Song, Junqiang</au><au>Cao, Xiaoqun</au><au>Jia, Zhongxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>325</spage><epage>333-330</epage><pages>325-333-330</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/428079</doi><orcidid>https://orcid.org/0000-0002-8353-7000</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-757X |
ispartof | Journal of Applied Mathematics, 2013-01, Vol.2013 (2013), p.325-333-330 |
issn | 1110-757X 1687-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a8c7e1c65d374dc59d985d02c22d3ac5 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access; IngentaConnect Journals |
subjects | Derivatives Iterative methods Lagrange multipliers Laplace transforms Mathematical analysis |
title | A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Iteration%20Formula%20of%20VIM%20for%20Fractional%20Heat-%20and%20Wave-Like%20Equations&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Yin,%20Fukang&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=325&rft.epage=333-330&rft.pages=325-333-330&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2013/428079&rft_dat=%3Cproquest_doaj_%3E1448718178%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a556t-a4ba97feca5c30afad6ca1fb6f96be5488e73780da1059d8cf7eefce8a52495c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1448718178&rft_id=info:pmid/&rft_airiti_id=P20160908001_201312_201609120001_201609120001_325_333_330&rfr_iscdi=true |