Loading…

Ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 by using Nb2O5 nano catalyst

The ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 accompanied by Nb2O5 nano catalysts were studied. The structure and morphology of synthesized Nb2O5 nano catalyst was investigated using scanning election microscopy (SEM), Electron dispersive X-ray spectroscopy (EDS) a...

Full description

Saved in:
Bibliographic Details
Published in:AIMS biophysics 2016-01, Vol.3 (3), p.415-430
Main Authors: Gunvant H. Sonawane, Sandip P. Patil, Shirish H. Sonawane, Vilas K. Mahajan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 accompanied by Nb2O5 nano catalysts were studied. The structure and morphology of synthesized Nb2O5 nano catalyst was investigated using scanning election microscopy (SEM), Electron dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD).The effects of various experimental parameters such as the Basic Red-2 concentration, catalyst dose, pH and addition of H2O2 on the ultrasonic, photocatalytic and sonophotocatalytic degradation were investigated. Photocatalytic and sonophotocatalytic degradation of Basic Red-2 was strongly affected by initial dye concentration, catalyst dose, H2O2 addition and pH. Basic pH (pH-10) was favored for the ultrasonic (US), photocatalytic (UV + Nb2O5) and sonophotocatalytic (US + UV + Nb2O5) degradation of Basic Red-2 by using Nb2O5 nano catalyst. The ultrasonic degradation of Basic Red-2 was enhanced by the addition of photocatalyst. Then, the effect of Nb2O5 dose on photocatalytic and sonophotocatalytic degradation were studied, and it was found that increase in catalyst dose increase in the percentage degradation of Basic Red-2. In addition, the effects of H2O2 on ultrasonic, photolytic, photocatalytic and sonophotocatalytic degradation was also investigated, and it was found that H2O2 enhances the % degradation of Basic Red-2. The possible mechanism of ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 reported by LC-MS shows generation of different degradation products
ISSN:2377-9098
2377-9098
DOI:10.3934/biophy.2016.3.415