Loading…

The origin of a primordial genome through spontaneous symmetry breaking

The heredity of a cell is provided by a small number of non-catalytic templates—the genome. How did genomes originate? Here, we demonstrate the possibility that genome-like molecules arise from symmetry breaking between complementary strands of self-replicating molecules. Our model assumes a populat...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-08, Vol.8 (1), p.250-11, Article 250
Main Authors: Takeuchi, Nobuto, Hogeweg, Paulien, Kaneko, Kunihiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-287af5331d173cbbaba99d3fbc4f5eb53e343a1b2ec8efa368a897a884c55d453
cites cdi_FETCH-LOGICAL-c606t-287af5331d173cbbaba99d3fbc4f5eb53e343a1b2ec8efa368a897a884c55d453
container_end_page 11
container_issue 1
container_start_page 250
container_title Nature communications
container_volume 8
creator Takeuchi, Nobuto
Hogeweg, Paulien
Kaneko, Kunihiko
description The heredity of a cell is provided by a small number of non-catalytic templates—the genome. How did genomes originate? Here, we demonstrate the possibility that genome-like molecules arise from symmetry breaking between complementary strands of self-replicating molecules. Our model assumes a population of protocells, each containing a population of self-replicating catalytic molecules. The protocells evolve towards maximising the catalytic activities of the molecules to increase their growth rates. Conversely, the molecules evolve towards minimising their catalytic activities to increase their intracellular relative fitness. These conflicting tendencies induce the symmetry breaking, whereby one strand of the molecules remains catalytic and increases its copy number (enzyme-like molecules), whereas the other becomes non-catalytic and decreases its copy number (genome-like molecules). This asymmetry increases the equilibrium cellular fitness by decreasing mutation pressure and increasing intracellular genetic drift. These results implicate conflicting multilevel evolution as a key cause of the origin of genetic complexity. Early molecules of life likely served both as templates and catalysts, raising the question of how functionally distinct genomes and enzymes arose. Here, the authors show that conflict between evolution at the molecular and cellular levels can drive functional differentiation of the two strands of self-replicating molecules and lead to copy number differences between the two.
doi_str_mv 10.1038/s41467-017-00243-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a9324f8d29434b11b4e65ca140215cea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a9324f8d29434b11b4e65ca140215cea</doaj_id><sourcerecordid>1929059992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-287af5331d173cbbaba99d3fbc4f5eb53e343a1b2ec8efa368a897a884c55d453</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEolXpH-CALHHhEvBnYl-QUFVKpUpcytkaO5NsliRe7AR1_z3eTam2SFiyPPK883g8b1G8ZfQjo0J_SpLJqi4py5tyKcqHF8U5p5KVrObi5Ul8VlymtKV5CcO0lK-LM641y-XyvLi53yAJse_6iYSWANnFfgyx6WEgHU5hRDJvYli6DUm7MM0wYVgSSftxxDnuiYsIP_upe1O8amFIePl4XhQ_vl7fX30r777f3F59uSt9Rau55LqGVgnBGlYL7xw4MKYRrfOyVeiUQCEFMMfRa2xBVBq0qUFr6ZVqpBIXxe3KbQJs7aFZiHsboLfHixA7C3Hu_YAWjOCy1Q03UkjHmJNYKQ9MUs6UR8iszytrt7gRG4_THGF4Bn2emfqN7cJvq5SqtdYZ8OEREMOvBdNsxz55HIZ1SpYZbrSpRHXo-_0_0m1Y4pRHdVRRZYzhWcVXlY8hpYjtUzOM2oPtdrXdZtvt0Xb7kIvenX7jqeSvyVkgVkHKqanDePL2_7F_AIMTuXU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929059992</pqid></control><display><type>article</type><title>The origin of a primordial genome through spontaneous symmetry breaking</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Takeuchi, Nobuto ; Hogeweg, Paulien ; Kaneko, Kunihiko</creator><creatorcontrib>Takeuchi, Nobuto ; Hogeweg, Paulien ; Kaneko, Kunihiko</creatorcontrib><description>The heredity of a cell is provided by a small number of non-catalytic templates—the genome. How did genomes originate? Here, we demonstrate the possibility that genome-like molecules arise from symmetry breaking between complementary strands of self-replicating molecules. Our model assumes a population of protocells, each containing a population of self-replicating catalytic molecules. The protocells evolve towards maximising the catalytic activities of the molecules to increase their growth rates. Conversely, the molecules evolve towards minimising their catalytic activities to increase their intracellular relative fitness. These conflicting tendencies induce the symmetry breaking, whereby one strand of the molecules remains catalytic and increases its copy number (enzyme-like molecules), whereas the other becomes non-catalytic and decreases its copy number (genome-like molecules). This asymmetry increases the equilibrium cellular fitness by decreasing mutation pressure and increasing intracellular genetic drift. These results implicate conflicting multilevel evolution as a key cause of the origin of genetic complexity. Early molecules of life likely served both as templates and catalysts, raising the question of how functionally distinct genomes and enzymes arose. Here, the authors show that conflict between evolution at the molecular and cellular levels can drive functional differentiation of the two strands of self-replicating molecules and lead to copy number differences between the two.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-017-00243-x</identifier><identifier>PMID: 28811464</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2397 ; 631/181/2468 ; 631/181/904 ; Artificial Cells - chemistry ; Asymmetry ; Broken symmetry ; Catalysis ; Catalysts ; Copy number ; Differentiation ; Enzymes ; Evolution, Molecular ; Genetic Drift ; Genome ; Genomes ; Humanities and Social Sciences ; Models, Genetic ; multidisciplinary ; Replication ; Science ; Science (multidisciplinary) ; Strands ; Symmetry</subject><ispartof>Nature communications, 2017-08, Vol.8 (1), p.250-11, Article 250</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-287af5331d173cbbaba99d3fbc4f5eb53e343a1b2ec8efa368a897a884c55d453</citedby><cites>FETCH-LOGICAL-c606t-287af5331d173cbbaba99d3fbc4f5eb53e343a1b2ec8efa368a897a884c55d453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1929059992/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1929059992?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28811464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takeuchi, Nobuto</creatorcontrib><creatorcontrib>Hogeweg, Paulien</creatorcontrib><creatorcontrib>Kaneko, Kunihiko</creatorcontrib><title>The origin of a primordial genome through spontaneous symmetry breaking</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The heredity of a cell is provided by a small number of non-catalytic templates—the genome. How did genomes originate? Here, we demonstrate the possibility that genome-like molecules arise from symmetry breaking between complementary strands of self-replicating molecules. Our model assumes a population of protocells, each containing a population of self-replicating catalytic molecules. The protocells evolve towards maximising the catalytic activities of the molecules to increase their growth rates. Conversely, the molecules evolve towards minimising their catalytic activities to increase their intracellular relative fitness. These conflicting tendencies induce the symmetry breaking, whereby one strand of the molecules remains catalytic and increases its copy number (enzyme-like molecules), whereas the other becomes non-catalytic and decreases its copy number (genome-like molecules). This asymmetry increases the equilibrium cellular fitness by decreasing mutation pressure and increasing intracellular genetic drift. These results implicate conflicting multilevel evolution as a key cause of the origin of genetic complexity. Early molecules of life likely served both as templates and catalysts, raising the question of how functionally distinct genomes and enzymes arose. Here, the authors show that conflict between evolution at the molecular and cellular levels can drive functional differentiation of the two strands of self-replicating molecules and lead to copy number differences between the two.</description><subject>631/114/2397</subject><subject>631/181/2468</subject><subject>631/181/904</subject><subject>Artificial Cells - chemistry</subject><subject>Asymmetry</subject><subject>Broken symmetry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Copy number</subject><subject>Differentiation</subject><subject>Enzymes</subject><subject>Evolution, Molecular</subject><subject>Genetic Drift</subject><subject>Genome</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Models, Genetic</subject><subject>multidisciplinary</subject><subject>Replication</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Strands</subject><subject>Symmetry</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1v1DAQhiMEolXpH-CALHHhEvBnYl-QUFVKpUpcytkaO5NsliRe7AR1_z3eTam2SFiyPPK883g8b1G8ZfQjo0J_SpLJqi4py5tyKcqHF8U5p5KVrObi5Ul8VlymtKV5CcO0lK-LM641y-XyvLi53yAJse_6iYSWANnFfgyx6WEgHU5hRDJvYli6DUm7MM0wYVgSSftxxDnuiYsIP_upe1O8amFIePl4XhQ_vl7fX30r777f3F59uSt9Rau55LqGVgnBGlYL7xw4MKYRrfOyVeiUQCEFMMfRa2xBVBq0qUFr6ZVqpBIXxe3KbQJs7aFZiHsboLfHixA7C3Hu_YAWjOCy1Q03UkjHmJNYKQ9MUs6UR8iszytrt7gRG4_THGF4Bn2emfqN7cJvq5SqtdYZ8OEREMOvBdNsxz55HIZ1SpYZbrSpRHXo-_0_0m1Y4pRHdVRRZYzhWcVXlY8hpYjtUzOM2oPtdrXdZtvt0Xb7kIvenX7jqeSvyVkgVkHKqanDePL2_7F_AIMTuXU</recordid><startdate>20170815</startdate><enddate>20170815</enddate><creator>Takeuchi, Nobuto</creator><creator>Hogeweg, Paulien</creator><creator>Kaneko, Kunihiko</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170815</creationdate><title>The origin of a primordial genome through spontaneous symmetry breaking</title><author>Takeuchi, Nobuto ; Hogeweg, Paulien ; Kaneko, Kunihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-287af5331d173cbbaba99d3fbc4f5eb53e343a1b2ec8efa368a897a884c55d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/114/2397</topic><topic>631/181/2468</topic><topic>631/181/904</topic><topic>Artificial Cells - chemistry</topic><topic>Asymmetry</topic><topic>Broken symmetry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Copy number</topic><topic>Differentiation</topic><topic>Enzymes</topic><topic>Evolution, Molecular</topic><topic>Genetic Drift</topic><topic>Genome</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Models, Genetic</topic><topic>multidisciplinary</topic><topic>Replication</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Strands</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeuchi, Nobuto</creatorcontrib><creatorcontrib>Hogeweg, Paulien</creatorcontrib><creatorcontrib>Kaneko, Kunihiko</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeuchi, Nobuto</au><au>Hogeweg, Paulien</au><au>Kaneko, Kunihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The origin of a primordial genome through spontaneous symmetry breaking</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2017-08-15</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>250</spage><epage>11</epage><pages>250-11</pages><artnum>250</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The heredity of a cell is provided by a small number of non-catalytic templates—the genome. How did genomes originate? Here, we demonstrate the possibility that genome-like molecules arise from symmetry breaking between complementary strands of self-replicating molecules. Our model assumes a population of protocells, each containing a population of self-replicating catalytic molecules. The protocells evolve towards maximising the catalytic activities of the molecules to increase their growth rates. Conversely, the molecules evolve towards minimising their catalytic activities to increase their intracellular relative fitness. These conflicting tendencies induce the symmetry breaking, whereby one strand of the molecules remains catalytic and increases its copy number (enzyme-like molecules), whereas the other becomes non-catalytic and decreases its copy number (genome-like molecules). This asymmetry increases the equilibrium cellular fitness by decreasing mutation pressure and increasing intracellular genetic drift. These results implicate conflicting multilevel evolution as a key cause of the origin of genetic complexity. Early molecules of life likely served both as templates and catalysts, raising the question of how functionally distinct genomes and enzymes arose. Here, the authors show that conflict between evolution at the molecular and cellular levels can drive functional differentiation of the two strands of self-replicating molecules and lead to copy number differences between the two.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28811464</pmid><doi>10.1038/s41467-017-00243-x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2017-08, Vol.8 (1), p.250-11, Article 250
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a9324f8d29434b11b4e65ca140215cea
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/2397
631/181/2468
631/181/904
Artificial Cells - chemistry
Asymmetry
Broken symmetry
Catalysis
Catalysts
Copy number
Differentiation
Enzymes
Evolution, Molecular
Genetic Drift
Genome
Genomes
Humanities and Social Sciences
Models, Genetic
multidisciplinary
Replication
Science
Science (multidisciplinary)
Strands
Symmetry
title The origin of a primordial genome through spontaneous symmetry breaking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20origin%20of%20a%20primordial%20genome%20through%20spontaneous%20symmetry%20breaking&rft.jtitle=Nature%20communications&rft.au=Takeuchi,%20Nobuto&rft.date=2017-08-15&rft.volume=8&rft.issue=1&rft.spage=250&rft.epage=11&rft.pages=250-11&rft.artnum=250&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-017-00243-x&rft_dat=%3Cproquest_doaj_%3E1929059992%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-287af5331d173cbbaba99d3fbc4f5eb53e343a1b2ec8efa368a897a884c55d453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1929059992&rft_id=info:pmid/28811464&rfr_iscdi=true