Loading…

Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses

In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. T...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-9
Main Authors: Lou, Jungang, Wang, Nan, Li, Xuechen, Zou, Kefa, Lu, Jianquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053
cites cdi_FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053
container_end_page 9
container_issue 2020
container_start_page 1
container_title Complexity (New York, N.Y.)
container_volume 2020
creator Lou, Jungang
Wang, Nan
Li, Xuechen
Zou, Kefa
Lu, Jianquan
description In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally, two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with hybrid impulses.
doi_str_mv 10.1155/2020/8712027
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a943e49bea5945a5ad137c33c9bf284d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a943e49bea5945a5ad137c33c9bf284d</doaj_id><sourcerecordid>2465234732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxSMEElDYmFEkRgj4M7ZHxGdFBQMwW5fYBpe0Lk6iqvz1uKSCkendnX56d_ey7Aijc4w5vyCIoAspcFKxle1hpFSBOCm317UoCyKk2M3223aKEFIlFXvZw3MHlW98t8phbvJN9wWdD_M8uPzaNrCyJn-0fYQmSbcM8aPNl757z-9XVfQmH88WfdPa9iDbcZCKw42Ostfbm5er-2LydDe-upwUNSNlV1CDMXIOnBISlcpwzEXpJGeuUphLIp1j2CrBrVUy_VAiVDkjpRXCqhpxOsrGg68JMNWL6GcQVzqA1z-DEN80xM7XjdWgGLVMVRa4Yhw4GExFTWmtKkckM8nrZPBaxPDZ27bT09DHeTpfE1ZyQpmgJFFnA1XH0LbRut-tGOl19Hodvd5En_DTAX_3cwNL_x99PNA2MdbBH40Z41jQb6J5i28</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465234732</pqid></control><display><type>article</type><title>Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses</title><source>Wiley Online Library Open Access</source><creator>Lou, Jungang ; Wang, Nan ; Li, Xuechen ; Zou, Kefa ; Lu, Jianquan</creator><contributor>Innocenti, Giacomo ; Giacomo Innocenti</contributor><creatorcontrib>Lou, Jungang ; Wang, Nan ; Li, Xuechen ; Zou, Kefa ; Lu, Jianquan ; Innocenti, Giacomo ; Giacomo Innocenti</creatorcontrib><description>In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally, two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with hybrid impulses.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2020/8712027</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Control stability ; Controllers ; Dynamical systems ; Impulses ; Inequality ; Neural networks ; Pinning ; Stability analysis</subject><ispartof>Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-9</ispartof><rights>Copyright © 2020 Kefa Zou et al.</rights><rights>Copyright © 2020 Kefa Zou et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053</citedby><cites>FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053</cites><orcidid>0000-0001-8052-221X ; 0000-0002-9078-603X ; 0000-0003-4423-6034 ; 0000-0002-7852-9591 ; 0000-0002-5325-0404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Innocenti, Giacomo</contributor><contributor>Giacomo Innocenti</contributor><creatorcontrib>Lou, Jungang</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Li, Xuechen</creatorcontrib><creatorcontrib>Zou, Kefa</creatorcontrib><creatorcontrib>Lu, Jianquan</creatorcontrib><title>Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses</title><title>Complexity (New York, N.Y.)</title><description>In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally, two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with hybrid impulses.</description><subject>Control stability</subject><subject>Controllers</subject><subject>Dynamical systems</subject><subject>Impulses</subject><subject>Inequality</subject><subject>Neural networks</subject><subject>Pinning</subject><subject>Stability analysis</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkL1PwzAQxSMEElDYmFEkRgj4M7ZHxGdFBQMwW5fYBpe0Lk6iqvz1uKSCkendnX56d_ey7Aijc4w5vyCIoAspcFKxle1hpFSBOCm317UoCyKk2M3223aKEFIlFXvZw3MHlW98t8phbvJN9wWdD_M8uPzaNrCyJn-0fYQmSbcM8aPNl757z-9XVfQmH88WfdPa9iDbcZCKw42Ostfbm5er-2LydDe-upwUNSNlV1CDMXIOnBISlcpwzEXpJGeuUphLIp1j2CrBrVUy_VAiVDkjpRXCqhpxOsrGg68JMNWL6GcQVzqA1z-DEN80xM7XjdWgGLVMVRa4Yhw4GExFTWmtKkckM8nrZPBaxPDZ27bT09DHeTpfE1ZyQpmgJFFnA1XH0LbRut-tGOl19Hodvd5En_DTAX_3cwNL_x99PNA2MdbBH40Z41jQb6J5i28</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lou, Jungang</creator><creator>Wang, Nan</creator><creator>Li, Xuechen</creator><creator>Zou, Kefa</creator><creator>Lu, Jianquan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8052-221X</orcidid><orcidid>https://orcid.org/0000-0002-9078-603X</orcidid><orcidid>https://orcid.org/0000-0003-4423-6034</orcidid><orcidid>https://orcid.org/0000-0002-7852-9591</orcidid><orcidid>https://orcid.org/0000-0002-5325-0404</orcidid></search><sort><creationdate>2020</creationdate><title>Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses</title><author>Lou, Jungang ; Wang, Nan ; Li, Xuechen ; Zou, Kefa ; Lu, Jianquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control stability</topic><topic>Controllers</topic><topic>Dynamical systems</topic><topic>Impulses</topic><topic>Inequality</topic><topic>Neural networks</topic><topic>Pinning</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Jungang</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Li, Xuechen</creatorcontrib><creatorcontrib>Zou, Kefa</creatorcontrib><creatorcontrib>Lu, Jianquan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Jungang</au><au>Wang, Nan</au><au>Li, Xuechen</au><au>Zou, Kefa</au><au>Lu, Jianquan</au><au>Innocenti, Giacomo</au><au>Giacomo Innocenti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally, two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with hybrid impulses.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8712027</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8052-221X</orcidid><orcidid>https://orcid.org/0000-0002-9078-603X</orcidid><orcidid>https://orcid.org/0000-0003-4423-6034</orcidid><orcidid>https://orcid.org/0000-0002-7852-9591</orcidid><orcidid>https://orcid.org/0000-0002-5325-0404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-9
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a943e49bea5945a5ad137c33c9bf284d
source Wiley Online Library Open Access
subjects Control stability
Controllers
Dynamical systems
Impulses
Inequality
Neural networks
Pinning
Stability analysis
title Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Stabilization%20of%20Delayed%20Neural%20Networks%20with%20Hybrid%20Impulses&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Lou,%20Jungang&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2020/8712027&rft_dat=%3Cproquest_doaj_%3E2465234732%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465234732&rft_id=info:pmid/&rfr_iscdi=true