Loading…
Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses
In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. T...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-9 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053 |
container_end_page | 9 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Complexity (New York, N.Y.) |
container_volume | 2020 |
creator | Lou, Jungang Wang, Nan Li, Xuechen Zou, Kefa Lu, Jianquan |
description | In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally, two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with hybrid impulses. |
doi_str_mv | 10.1155/2020/8712027 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a943e49bea5945a5ad137c33c9bf284d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a943e49bea5945a5ad137c33c9bf284d</doaj_id><sourcerecordid>2465234732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxSMEElDYmFEkRgj4M7ZHxGdFBQMwW5fYBpe0Lk6iqvz1uKSCkendnX56d_ey7Aijc4w5vyCIoAspcFKxle1hpFSBOCm317UoCyKk2M3223aKEFIlFXvZw3MHlW98t8phbvJN9wWdD_M8uPzaNrCyJn-0fYQmSbcM8aPNl757z-9XVfQmH88WfdPa9iDbcZCKw42Ostfbm5er-2LydDe-upwUNSNlV1CDMXIOnBISlcpwzEXpJGeuUphLIp1j2CrBrVUy_VAiVDkjpRXCqhpxOsrGg68JMNWL6GcQVzqA1z-DEN80xM7XjdWgGLVMVRa4Yhw4GExFTWmtKkckM8nrZPBaxPDZ27bT09DHeTpfE1ZyQpmgJFFnA1XH0LbRut-tGOl19Hodvd5En_DTAX_3cwNL_x99PNA2MdbBH40Z41jQb6J5i28</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465234732</pqid></control><display><type>article</type><title>Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses</title><source>Wiley Online Library Open Access</source><creator>Lou, Jungang ; Wang, Nan ; Li, Xuechen ; Zou, Kefa ; Lu, Jianquan</creator><contributor>Innocenti, Giacomo ; Giacomo Innocenti</contributor><creatorcontrib>Lou, Jungang ; Wang, Nan ; Li, Xuechen ; Zou, Kefa ; Lu, Jianquan ; Innocenti, Giacomo ; Giacomo Innocenti</creatorcontrib><description>In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally, two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with hybrid impulses.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2020/8712027</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Control stability ; Controllers ; Dynamical systems ; Impulses ; Inequality ; Neural networks ; Pinning ; Stability analysis</subject><ispartof>Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-9</ispartof><rights>Copyright © 2020 Kefa Zou et al.</rights><rights>Copyright © 2020 Kefa Zou et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053</citedby><cites>FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053</cites><orcidid>0000-0001-8052-221X ; 0000-0002-9078-603X ; 0000-0003-4423-6034 ; 0000-0002-7852-9591 ; 0000-0002-5325-0404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Innocenti, Giacomo</contributor><contributor>Giacomo Innocenti</contributor><creatorcontrib>Lou, Jungang</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Li, Xuechen</creatorcontrib><creatorcontrib>Zou, Kefa</creatorcontrib><creatorcontrib>Lu, Jianquan</creatorcontrib><title>Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses</title><title>Complexity (New York, N.Y.)</title><description>In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally, two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with hybrid impulses.</description><subject>Control stability</subject><subject>Controllers</subject><subject>Dynamical systems</subject><subject>Impulses</subject><subject>Inequality</subject><subject>Neural networks</subject><subject>Pinning</subject><subject>Stability analysis</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkL1PwzAQxSMEElDYmFEkRgj4M7ZHxGdFBQMwW5fYBpe0Lk6iqvz1uKSCkendnX56d_ey7Aijc4w5vyCIoAspcFKxle1hpFSBOCm317UoCyKk2M3223aKEFIlFXvZw3MHlW98t8phbvJN9wWdD_M8uPzaNrCyJn-0fYQmSbcM8aPNl757z-9XVfQmH88WfdPa9iDbcZCKw42Ostfbm5er-2LydDe-upwUNSNlV1CDMXIOnBISlcpwzEXpJGeuUphLIp1j2CrBrVUy_VAiVDkjpRXCqhpxOsrGg68JMNWL6GcQVzqA1z-DEN80xM7XjdWgGLVMVRa4Yhw4GExFTWmtKkckM8nrZPBaxPDZ27bT09DHeTpfE1ZyQpmgJFFnA1XH0LbRut-tGOl19Hodvd5En_DTAX_3cwNL_x99PNA2MdbBH40Z41jQb6J5i28</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lou, Jungang</creator><creator>Wang, Nan</creator><creator>Li, Xuechen</creator><creator>Zou, Kefa</creator><creator>Lu, Jianquan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8052-221X</orcidid><orcidid>https://orcid.org/0000-0002-9078-603X</orcidid><orcidid>https://orcid.org/0000-0003-4423-6034</orcidid><orcidid>https://orcid.org/0000-0002-7852-9591</orcidid><orcidid>https://orcid.org/0000-0002-5325-0404</orcidid></search><sort><creationdate>2020</creationdate><title>Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses</title><author>Lou, Jungang ; Wang, Nan ; Li, Xuechen ; Zou, Kefa ; Lu, Jianquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control stability</topic><topic>Controllers</topic><topic>Dynamical systems</topic><topic>Impulses</topic><topic>Inequality</topic><topic>Neural networks</topic><topic>Pinning</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Jungang</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Li, Xuechen</creatorcontrib><creatorcontrib>Zou, Kefa</creatorcontrib><creatorcontrib>Lu, Jianquan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Jungang</au><au>Wang, Nan</au><au>Li, Xuechen</au><au>Zou, Kefa</au><au>Lu, Jianquan</au><au>Innocenti, Giacomo</au><au>Giacomo Innocenti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally, two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with hybrid impulses.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8712027</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8052-221X</orcidid><orcidid>https://orcid.org/0000-0002-9078-603X</orcidid><orcidid>https://orcid.org/0000-0003-4423-6034</orcidid><orcidid>https://orcid.org/0000-0002-7852-9591</orcidid><orcidid>https://orcid.org/0000-0002-5325-0404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-9 |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a943e49bea5945a5ad137c33c9bf284d |
source | Wiley Online Library Open Access |
subjects | Control stability Controllers Dynamical systems Impulses Inequality Neural networks Pinning Stability analysis |
title | Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Stabilization%20of%20Delayed%20Neural%20Networks%20with%20Hybrid%20Impulses&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Lou,%20Jungang&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2020/8712027&rft_dat=%3Cproquest_doaj_%3E2465234732%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-3d110ffaf978069d51576f854fb915828ff41e975ee98109600bfd88e77e9c053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465234732&rft_id=info:pmid/&rfr_iscdi=true |