Loading…
Development and characterization of dual-modified yam (Dioscorea rotundata) starch-based films
The current consumer demand for fresh food and the interest in caring for the environment have driven the development of biodegradable film packaging to replace synthetic films to preserve the integrity of food. The objective of this work was to evaluate the effects of starch modifications (oxidized...
Saved in:
Published in: | Heliyon 2021-04, Vol.7 (4), p.e06644-e06644, Article e06644 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The current consumer demand for fresh food and the interest in caring for the environment have driven the development of biodegradable film packaging to replace synthetic films to preserve the integrity of food. The objective of this work was to evaluate the effects of starch modifications (oxidized, cross-linked, and dual: oxidized/cross-linked), starch concentration (1 and 2%), and glycerol concentration (5 and 15%) on water vapor permeability (WVP), mechanical properties (tensile strength and elongation), optical, and structural properties of films based on “hawthorn” yam starch. The WVP of the films was 4.4 × 10−10 to 1.5 × 10−9 g/m∗s∗Pa, where the films with oxidized yam starch showed a 58.04% reduction concerning the native starch. The tensile strength of oxidized yam starch films showed a decrease of 17.51% with an increase in glycerol concentration. For the 1% starch concentration, elongation increased by 17.03% when the glycerol concentration was increased from 5 to 15%. Modification of starch, starch concentration, and glycerol have a significant effect on the barrier, mechanical, physical, and structural properties of films made with yam starch, where films made with oxidized yam starches at a concentration of 1% starch and 5% glycerol showed the best responses of the properties evaluated.
Yam starch, Edible films, Modified starch, Barrier properties |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2021.e06644 |