Loading…
Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification
Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., a...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-07, Vol.21 (14), p.4669 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3 |
container_end_page | |
container_issue | 14 |
container_start_page | 4669 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Awais, Muhammad Chiari, Lorenzo Ihlen, Espen A. F. Helbostad, Jorunn L. Palmerini, Luca |
description | Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs. |
doi_str_mv | 10.3390/s21144669 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a96b926e6d474f86af77109cef618402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a96b926e6d474f86af77109cef618402</doaj_id><sourcerecordid>2554708000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhi1ERUvgwD-wxAUOS8cf6_VekKJAoVKqXoCr5fWOE0ebdbB3K_Xf45Cq0J48mnn0yPNqCHnH4JMQLVxmzpiUSrUvyAWTXFaac3j5X31OXue8A-BCCP2KnAspACS0F2S7GmzOwdmB3li3DSPSNdo0hnFDf2HKc6ZfEA__mj4mOm2R3g49Jrrs52HK9CohVutwdwSWbirFdE9PZl_cU4jjG3Lm7ZDx7cO7ID-vvv5Yfa_Wt9-uV8t15coGU9UxzXshWdM5zbHnohOgG0AvHBfgmxp4xyz2skfeou-UbxrhlGwBwNeNFQtyffL20e7MIYW9Tfcm2mD-NmLaGJum4AY0tlVdyxWqXjbSa2WLi0Hr0CumZQlrQT6fXIe522PvcJySHZ5In07GsDWbeGe0gFaVsBfkw4Mgxd8z5snsQ3Y4DHbEOGfD67pmoDRnBX3_DN3FOY0lqiMlG9Blw0J9PFEuxZwT-sfPMDDHWzCPtyD-AHoepD0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554708000</pqid></control><display><type>article</type><title>Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Awais, Muhammad ; Chiari, Lorenzo ; Ihlen, Espen A. F. ; Helbostad, Jorunn L. ; Palmerini, Luca</creator><creatorcontrib>Awais, Muhammad ; Chiari, Lorenzo ; Ihlen, Espen A. F. ; Helbostad, Jorunn L. ; Palmerini, Luca</creatorcontrib><description>Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21144669</identifier><identifier>PMID: 34300409</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accelerometers ; Adults ; Algorithms ; Cameras ; classical machine learning ; Classification ; Datasets ; Deep learning ; Exercise ; free living ; Laboratories ; Machine learning ; Neural networks ; older adults ; Older people ; physical activity classification ; Population ; Sensors ; Support vector machines ; wearable sensors ; Young adults</subject><ispartof>Sensors (Basel, Switzerland), 2021-07, Vol.21 (14), p.4669</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3</citedby><cites>FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3</cites><orcidid>0000-0003-4758-662X ; 0000-0003-0214-9290 ; 0000-0001-6421-9245 ; 0000-0002-2469-1809 ; 0000-0002-2318-4370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554708000/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554708000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>Awais, Muhammad</creatorcontrib><creatorcontrib>Chiari, Lorenzo</creatorcontrib><creatorcontrib>Ihlen, Espen A. F.</creatorcontrib><creatorcontrib>Helbostad, Jorunn L.</creatorcontrib><creatorcontrib>Palmerini, Luca</creatorcontrib><title>Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification</title><title>Sensors (Basel, Switzerland)</title><description>Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs.</description><subject>Accelerometers</subject><subject>Adults</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>classical machine learning</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Exercise</subject><subject>free living</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>older adults</subject><subject>Older people</subject><subject>physical activity classification</subject><subject>Population</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>wearable sensors</subject><subject>Young adults</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhi1ERUvgwD-wxAUOS8cf6_VekKJAoVKqXoCr5fWOE0ebdbB3K_Xf45Cq0J48mnn0yPNqCHnH4JMQLVxmzpiUSrUvyAWTXFaac3j5X31OXue8A-BCCP2KnAspACS0F2S7GmzOwdmB3li3DSPSNdo0hnFDf2HKc6ZfEA__mj4mOm2R3g49Jrrs52HK9CohVutwdwSWbirFdE9PZl_cU4jjG3Lm7ZDx7cO7ID-vvv5Yfa_Wt9-uV8t15coGU9UxzXshWdM5zbHnohOgG0AvHBfgmxp4xyz2skfeou-UbxrhlGwBwNeNFQtyffL20e7MIYW9Tfcm2mD-NmLaGJum4AY0tlVdyxWqXjbSa2WLi0Hr0CumZQlrQT6fXIe522PvcJySHZ5In07GsDWbeGe0gFaVsBfkw4Mgxd8z5snsQ3Y4DHbEOGfD67pmoDRnBX3_DN3FOY0lqiMlG9Blw0J9PFEuxZwT-sfPMDDHWzCPtyD-AHoepD0</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Awais, Muhammad</creator><creator>Chiari, Lorenzo</creator><creator>Ihlen, Espen A. F.</creator><creator>Helbostad, Jorunn L.</creator><creator>Palmerini, Luca</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4758-662X</orcidid><orcidid>https://orcid.org/0000-0003-0214-9290</orcidid><orcidid>https://orcid.org/0000-0001-6421-9245</orcidid><orcidid>https://orcid.org/0000-0002-2469-1809</orcidid><orcidid>https://orcid.org/0000-0002-2318-4370</orcidid></search><sort><creationdate>20210707</creationdate><title>Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification</title><author>Awais, Muhammad ; Chiari, Lorenzo ; Ihlen, Espen A. F. ; Helbostad, Jorunn L. ; Palmerini, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerometers</topic><topic>Adults</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>classical machine learning</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Exercise</topic><topic>free living</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>older adults</topic><topic>Older people</topic><topic>physical activity classification</topic><topic>Population</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>wearable sensors</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awais, Muhammad</creatorcontrib><creatorcontrib>Chiari, Lorenzo</creatorcontrib><creatorcontrib>Ihlen, Espen A. F.</creatorcontrib><creatorcontrib>Helbostad, Jorunn L.</creatorcontrib><creatorcontrib>Palmerini, Luca</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awais, Muhammad</au><au>Chiari, Lorenzo</au><au>Ihlen, Espen A. F.</au><au>Helbostad, Jorunn L.</au><au>Palmerini, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-07-07</date><risdate>2021</risdate><volume>21</volume><issue>14</issue><spage>4669</spage><pages>4669-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34300409</pmid><doi>10.3390/s21144669</doi><orcidid>https://orcid.org/0000-0003-4758-662X</orcidid><orcidid>https://orcid.org/0000-0003-0214-9290</orcidid><orcidid>https://orcid.org/0000-0001-6421-9245</orcidid><orcidid>https://orcid.org/0000-0002-2469-1809</orcidid><orcidid>https://orcid.org/0000-0002-2318-4370</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-07, Vol.21 (14), p.4669 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a96b926e6d474f86af77109cef618402 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access) |
subjects | Accelerometers Adults Algorithms Cameras classical machine learning Classification Datasets Deep learning Exercise free living Laboratories Machine learning Neural networks older adults Older people physical activity classification Population Sensors Support vector machines wearable sensors Young adults |
title | Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20Machine%20Learning%20Versus%20Deep%20Learning%20for%20the%20Older%20Adults%20Free-Living%20Activity%20Classification&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Awais,%20Muhammad&rft.date=2021-07-07&rft.volume=21&rft.issue=14&rft.spage=4669&rft.pages=4669-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21144669&rft_dat=%3Cproquest_doaj_%3E2554708000%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554708000&rft_id=info:pmid/34300409&rfr_iscdi=true |