Loading…

Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification

Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., a...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-07, Vol.21 (14), p.4669
Main Authors: Awais, Muhammad, Chiari, Lorenzo, Ihlen, Espen A. F., Helbostad, Jorunn L., Palmerini, Luca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3
cites cdi_FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3
container_end_page
container_issue 14
container_start_page 4669
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Awais, Muhammad
Chiari, Lorenzo
Ihlen, Espen A. F.
Helbostad, Jorunn L.
Palmerini, Luca
description Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs.
doi_str_mv 10.3390/s21144669
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a96b926e6d474f86af77109cef618402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a96b926e6d474f86af77109cef618402</doaj_id><sourcerecordid>2554708000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhi1ERUvgwD-wxAUOS8cf6_VekKJAoVKqXoCr5fWOE0ebdbB3K_Xf45Cq0J48mnn0yPNqCHnH4JMQLVxmzpiUSrUvyAWTXFaac3j5X31OXue8A-BCCP2KnAspACS0F2S7GmzOwdmB3li3DSPSNdo0hnFDf2HKc6ZfEA__mj4mOm2R3g49Jrrs52HK9CohVutwdwSWbirFdE9PZl_cU4jjG3Lm7ZDx7cO7ID-vvv5Yfa_Wt9-uV8t15coGU9UxzXshWdM5zbHnohOgG0AvHBfgmxp4xyz2skfeou-UbxrhlGwBwNeNFQtyffL20e7MIYW9Tfcm2mD-NmLaGJum4AY0tlVdyxWqXjbSa2WLi0Hr0CumZQlrQT6fXIe522PvcJySHZ5In07GsDWbeGe0gFaVsBfkw4Mgxd8z5snsQ3Y4DHbEOGfD67pmoDRnBX3_DN3FOY0lqiMlG9Blw0J9PFEuxZwT-sfPMDDHWzCPtyD-AHoepD0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554708000</pqid></control><display><type>article</type><title>Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Awais, Muhammad ; Chiari, Lorenzo ; Ihlen, Espen A. F. ; Helbostad, Jorunn L. ; Palmerini, Luca</creator><creatorcontrib>Awais, Muhammad ; Chiari, Lorenzo ; Ihlen, Espen A. F. ; Helbostad, Jorunn L. ; Palmerini, Luca</creatorcontrib><description>Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21144669</identifier><identifier>PMID: 34300409</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accelerometers ; Adults ; Algorithms ; Cameras ; classical machine learning ; Classification ; Datasets ; Deep learning ; Exercise ; free living ; Laboratories ; Machine learning ; Neural networks ; older adults ; Older people ; physical activity classification ; Population ; Sensors ; Support vector machines ; wearable sensors ; Young adults</subject><ispartof>Sensors (Basel, Switzerland), 2021-07, Vol.21 (14), p.4669</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3</citedby><cites>FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3</cites><orcidid>0000-0003-4758-662X ; 0000-0003-0214-9290 ; 0000-0001-6421-9245 ; 0000-0002-2469-1809 ; 0000-0002-2318-4370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554708000/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554708000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>Awais, Muhammad</creatorcontrib><creatorcontrib>Chiari, Lorenzo</creatorcontrib><creatorcontrib>Ihlen, Espen A. F.</creatorcontrib><creatorcontrib>Helbostad, Jorunn L.</creatorcontrib><creatorcontrib>Palmerini, Luca</creatorcontrib><title>Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification</title><title>Sensors (Basel, Switzerland)</title><description>Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs.</description><subject>Accelerometers</subject><subject>Adults</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>classical machine learning</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Exercise</subject><subject>free living</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>older adults</subject><subject>Older people</subject><subject>physical activity classification</subject><subject>Population</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>wearable sensors</subject><subject>Young adults</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhi1ERUvgwD-wxAUOS8cf6_VekKJAoVKqXoCr5fWOE0ebdbB3K_Xf45Cq0J48mnn0yPNqCHnH4JMQLVxmzpiUSrUvyAWTXFaac3j5X31OXue8A-BCCP2KnAspACS0F2S7GmzOwdmB3li3DSPSNdo0hnFDf2HKc6ZfEA__mj4mOm2R3g49Jrrs52HK9CohVutwdwSWbirFdE9PZl_cU4jjG3Lm7ZDx7cO7ID-vvv5Yfa_Wt9-uV8t15coGU9UxzXshWdM5zbHnohOgG0AvHBfgmxp4xyz2skfeou-UbxrhlGwBwNeNFQtyffL20e7MIYW9Tfcm2mD-NmLaGJum4AY0tlVdyxWqXjbSa2WLi0Hr0CumZQlrQT6fXIe522PvcJySHZ5In07GsDWbeGe0gFaVsBfkw4Mgxd8z5snsQ3Y4DHbEOGfD67pmoDRnBX3_DN3FOY0lqiMlG9Blw0J9PFEuxZwT-sfPMDDHWzCPtyD-AHoepD0</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Awais, Muhammad</creator><creator>Chiari, Lorenzo</creator><creator>Ihlen, Espen A. F.</creator><creator>Helbostad, Jorunn L.</creator><creator>Palmerini, Luca</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4758-662X</orcidid><orcidid>https://orcid.org/0000-0003-0214-9290</orcidid><orcidid>https://orcid.org/0000-0001-6421-9245</orcidid><orcidid>https://orcid.org/0000-0002-2469-1809</orcidid><orcidid>https://orcid.org/0000-0002-2318-4370</orcidid></search><sort><creationdate>20210707</creationdate><title>Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification</title><author>Awais, Muhammad ; Chiari, Lorenzo ; Ihlen, Espen A. F. ; Helbostad, Jorunn L. ; Palmerini, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerometers</topic><topic>Adults</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>classical machine learning</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Exercise</topic><topic>free living</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>older adults</topic><topic>Older people</topic><topic>physical activity classification</topic><topic>Population</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>wearable sensors</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awais, Muhammad</creatorcontrib><creatorcontrib>Chiari, Lorenzo</creatorcontrib><creatorcontrib>Ihlen, Espen A. F.</creatorcontrib><creatorcontrib>Helbostad, Jorunn L.</creatorcontrib><creatorcontrib>Palmerini, Luca</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awais, Muhammad</au><au>Chiari, Lorenzo</au><au>Ihlen, Espen A. F.</au><au>Helbostad, Jorunn L.</au><au>Palmerini, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-07-07</date><risdate>2021</risdate><volume>21</volume><issue>14</issue><spage>4669</spage><pages>4669-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34300409</pmid><doi>10.3390/s21144669</doi><orcidid>https://orcid.org/0000-0003-4758-662X</orcidid><orcidid>https://orcid.org/0000-0003-0214-9290</orcidid><orcidid>https://orcid.org/0000-0001-6421-9245</orcidid><orcidid>https://orcid.org/0000-0002-2469-1809</orcidid><orcidid>https://orcid.org/0000-0002-2318-4370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-07, Vol.21 (14), p.4669
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a96b926e6d474f86af77109cef618402
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access)
subjects Accelerometers
Adults
Algorithms
Cameras
classical machine learning
Classification
Datasets
Deep learning
Exercise
free living
Laboratories
Machine learning
Neural networks
older adults
Older people
physical activity classification
Population
Sensors
Support vector machines
wearable sensors
Young adults
title Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20Machine%20Learning%20Versus%20Deep%20Learning%20for%20the%20Older%20Adults%20Free-Living%20Activity%20Classification&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Awais,%20Muhammad&rft.date=2021-07-07&rft.volume=21&rft.issue=14&rft.spage=4669&rft.pages=4669-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21144669&rft_dat=%3Cproquest_doaj_%3E2554708000%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-b182d3417bc82ed23b30870ef3c230f7502b1aed4de29efb6f773c649000f57a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554708000&rft_id=info:pmid/34300409&rfr_iscdi=true