Loading…

Imaging Spectrum of the Developing Glioblastoma: A Cross-Sectional Observation Study

Glioblastoma (GBM) has the typical radiological appearance (TRA) of a centrally necrotic, peripherally enhancing tumor with surrounding edema. The objective of this study was to determine whether the developing GBM displays a spectrum of imaging changes detectable on routine clinical imaging prior t...

Full description

Saved in:
Bibliographic Details
Published in:Current oncology (Toronto) 2023-07, Vol.30 (7), p.6682-6698
Main Authors: Currie, Stuart, Fatania, Kavi, Frood, Russell, Whitehead, Ruth, Start, Joanna, Lee, Ming-Te, McDonald, Benjamin, Rankeillor, Kate, Roberts, Paul, Chakrabarty, Aruna, Mathew, Ryan K, Murray, Louise, Short, Susan, Scarsbrook, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glioblastoma (GBM) has the typical radiological appearance (TRA) of a centrally necrotic, peripherally enhancing tumor with surrounding edema. The objective of this study was to determine whether the developing GBM displays a spectrum of imaging changes detectable on routine clinical imaging prior to TRA GBM. Patients with pre-operative imaging diagnosed with GBM (1 January 2014-31 March 2022) were identified from a neuroscience center. The imaging was reviewed by an experienced neuroradiologist. Imaging patterns preceding TRA GBM were analyzed. A total of 76 out of 555 (14%) patients had imaging preceding TRA GBM, 57 had solitary lesions, and 19 had multiple lesions (total = 84 lesions). Here, 83% of the lesions had cortical or cortical/subcortical locations. The earliest imaging features for 84 lesions were T2 hyperintensity/CT low density ( = 18), CT hyperdensity ( = 51), and T2 iso-intensity ( = 15). Lesions initially showing T2 hyperintensity/CT low density later showed T2 iso-intensity. When CT and MRI were available, all CT hyperdense lesions showed T2 iso-intensity, reduced diffusivity, and the following enhancement patterns: nodular 35%, solid 29%, none 26%, and patchy peripheral 10%. The mean time to develop TRA GBM from T2 hyperintensity was 140 days and from CT hyperdensity was 69 days. This research suggests that the developing GBM shows a spectrum of imaging features, progressing through T2 hyperintensity to CT hyperdensity, T2 iso-intensity, reduced diffusivity, and variable enhancement to TRA GBM. Red flags for non-TRA GBM lesions are cortical/subcortical CT hyperdense/T2 iso-intense/low ADC. Future research correlating this imaging spectrum with pathophysiology may provide insight into GBM growth patterns.
ISSN:1718-7729
1198-0052
1718-7729
DOI:10.3390/curroncol30070490