Loading…

Crystal structure of the Ilheus virus helicase: implications for enzyme function and drug design

The Ilheus virus (ILHV) is an encephalitis associated arthropod-borne flavivirus. It was first identified in Ilheus City in the northeast Brazil before spreading to a wider geographic range. No specific vaccines or drugs are currently available for the treatment of ILHV infections. The ILHV helicase...

Full description

Saved in:
Bibliographic Details
Published in:Cell & bioscience 2022-04, Vol.12 (1), p.44-44, Article 44
Main Authors: Wang, De-Ping, Wang, Mei-Yue, Li, Yong-Mei, Shu, Wen, Cui, Wen, Jiang, Fang-Ying, Zhou, Xin, Wang, Wen-Ming, Cao, Ji-Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c597t-4f9f447e19e919494af7b0ed432570b4a0af253b117106284729998bee5be9393
cites cdi_FETCH-LOGICAL-c597t-4f9f447e19e919494af7b0ed432570b4a0af253b117106284729998bee5be9393
container_end_page 44
container_issue 1
container_start_page 44
container_title Cell & bioscience
container_volume 12
creator Wang, De-Ping
Wang, Mei-Yue
Li, Yong-Mei
Shu, Wen
Cui, Wen
Jiang, Fang-Ying
Zhou, Xin
Wang, Wen-Ming
Cao, Ji-Min
description The Ilheus virus (ILHV) is an encephalitis associated arthropod-borne flavivirus. It was first identified in Ilheus City in the northeast Brazil before spreading to a wider geographic range. No specific vaccines or drugs are currently available for the treatment of ILHV infections. The ILHV helicase, like other flavivirus helicases, possesses 5'-triphosphatase activity. This allows it to perform ATP hydrolysis to generate energy as well as sustain double-stranded RNA's unwinding during ILHV genome replication. Thus, ILHV helicase is an ideal target for inhibitor design. We determined the crystal structure of the ILHV helicase at 1.75-Å resolution. We then conducted molecular docking of ATP-Mn to the ILHV helicase. Comparisons with related flavivirus helicases indicated that both the NTP and the RNA-ILHV helicase binding sites were conserved across intra-genus species. This suggested that ILHV helicase adopts an identical mode in recognizing ATP/Mn . However, the P-loop in the active site showed a distinctive conformation; reflecting a different local structural rearrangement. ILHV helicase enzymatic activity was also characterized. This was found to be relatively lower than that of the DENV, ZIKV, MVE, and ALSV helicases. Our structure-guided mutagenesis revealed that R26A, E110A, and Q280A greatly reduced the ATPase activities. Moreover, we docked two small molecule inhibitors of DENV helicase (ST-610 and suramin) to the ILHV helicase and found that these two molecules had the potential to inhibit the activity of ILHV helicase as well. High-resolution ILHV helicase structural analysis demonstrates the key amino acids of ATPase activities and could be useful for the design of inhibitors targeting the helicase of ILHV.
doi_str_mv 10.1186/s13578-022-00777-8
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a99daf423db54be8982114406d90fb0f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706447066</galeid><doaj_id>oai_doaj_org_article_a99daf423db54be8982114406d90fb0f</doaj_id><sourcerecordid>A706447066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-4f9f447e19e919494af7b0ed432570b4a0af253b117106284729998bee5be9393</originalsourceid><addsrcrecordid>eNptUttu1DAQjRCIVqU_wAOyxAt9SPEtccwDUrXislIlJC7PxknGWa8Se7GdiuXrcbqldBG2ZI_G55zRjE9RPCf4kpCmfh0Jq0RTYkpLjIUQZfOoOKWYVyUTmDx-EJ8U5zFucV5cEiyqp8UJqzhtGKWnxfdV2MekRxRTmLs0B0DeoLQBtB43MEd0Y0M-NzDaTkd4g-y0W8JkvYvI-IDA_dpPgMzsuiWJtOtRH-YB9RDt4J4VT4weI5zf3WfFt_fvvq4-ltefPqxXV9dlV0mRSm6k4VwAkSCJ5JJrI1oMPWe0ErjlGmtDK9YSIgiuacMFlVI2LUDVgmSSnRXrg27v9Vbtgp102CuvrbpN-DAoHZLtRlBayl4bTlnfVryFRjaUEM5x3UtsWmyy1tuD1m5uJ-g7cCno8Uj0-MXZjRr8jZKYUM7qLPDqTiD4HzPEpCYbOxhH7cDPUdG6InUjcy8Z-vIf6NbPweVRLSiaf5ET8Rc16NyAdcbnut0iqq4ErvPkcL2UvfwPKu8eJtt5B8bm_BHh4oiQMQl-pkHPMar1l8_HWHrAdsHHGMDcz4NgtVhSHSypsiXVrSVVk0kvHk7ynvLHgOw3t4PZhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652204417</pqid></control><display><type>article</type><title>Crystal structure of the Ilheus virus helicase: implications for enzyme function and drug design</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, De-Ping ; Wang, Mei-Yue ; Li, Yong-Mei ; Shu, Wen ; Cui, Wen ; Jiang, Fang-Ying ; Zhou, Xin ; Wang, Wen-Ming ; Cao, Ji-Min</creator><creatorcontrib>Wang, De-Ping ; Wang, Mei-Yue ; Li, Yong-Mei ; Shu, Wen ; Cui, Wen ; Jiang, Fang-Ying ; Zhou, Xin ; Wang, Wen-Ming ; Cao, Ji-Min</creatorcontrib><description>The Ilheus virus (ILHV) is an encephalitis associated arthropod-borne flavivirus. It was first identified in Ilheus City in the northeast Brazil before spreading to a wider geographic range. No specific vaccines or drugs are currently available for the treatment of ILHV infections. The ILHV helicase, like other flavivirus helicases, possesses 5'-triphosphatase activity. This allows it to perform ATP hydrolysis to generate energy as well as sustain double-stranded RNA's unwinding during ILHV genome replication. Thus, ILHV helicase is an ideal target for inhibitor design. We determined the crystal structure of the ILHV helicase at 1.75-Å resolution. We then conducted molecular docking of ATP-Mn to the ILHV helicase. Comparisons with related flavivirus helicases indicated that both the NTP and the RNA-ILHV helicase binding sites were conserved across intra-genus species. This suggested that ILHV helicase adopts an identical mode in recognizing ATP/Mn . However, the P-loop in the active site showed a distinctive conformation; reflecting a different local structural rearrangement. ILHV helicase enzymatic activity was also characterized. This was found to be relatively lower than that of the DENV, ZIKV, MVE, and ALSV helicases. Our structure-guided mutagenesis revealed that R26A, E110A, and Q280A greatly reduced the ATPase activities. Moreover, we docked two small molecule inhibitors of DENV helicase (ST-610 and suramin) to the ILHV helicase and found that these two molecules had the potential to inhibit the activity of ILHV helicase as well. High-resolution ILHV helicase structural analysis demonstrates the key amino acids of ATPase activities and could be useful for the design of inhibitors targeting the helicase of ILHV.</description><identifier>ISSN: 2045-3701</identifier><identifier>EISSN: 2045-3701</identifier><identifier>DOI: 10.1186/s13578-022-00777-8</identifier><identifier>PMID: 35428322</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adenosine triphosphatase ; Analysis ; ATP hydrolysis ; Binding sites ; Biopharmaceutics ; Conformation ; Crystal structure ; Crystals ; Dengue fever ; DNA helicase ; Double-stranded RNA ; Drug development ; Drug therapy ; Encephalitis ; Enzymatic activity ; Genomes ; Genomics ; Health aspects ; Hydrolysis ; Ilheus virus ; Infections ; Molecular docking ; Mutagenesis ; NS3 helicase ; Proteins ; RNA ; RNA helicase ; Structure ; Suramin ; Suramin sodium ; Triphosphatase ; Unwinding ; Vaccines ; West Nile virus ; Zika virus</subject><ispartof>Cell &amp; bioscience, 2022-04, Vol.12 (1), p.44-44, Article 44</ispartof><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-4f9f447e19e919494af7b0ed432570b4a0af253b117106284729998bee5be9393</citedby><cites>FETCH-LOGICAL-c597t-4f9f447e19e919494af7b0ed432570b4a0af253b117106284729998bee5be9393</cites><orcidid>0000-0002-6546-555X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012436/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2652204417?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35428322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, De-Ping</creatorcontrib><creatorcontrib>Wang, Mei-Yue</creatorcontrib><creatorcontrib>Li, Yong-Mei</creatorcontrib><creatorcontrib>Shu, Wen</creatorcontrib><creatorcontrib>Cui, Wen</creatorcontrib><creatorcontrib>Jiang, Fang-Ying</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Wang, Wen-Ming</creatorcontrib><creatorcontrib>Cao, Ji-Min</creatorcontrib><title>Crystal structure of the Ilheus virus helicase: implications for enzyme function and drug design</title><title>Cell &amp; bioscience</title><addtitle>Cell Biosci</addtitle><description>The Ilheus virus (ILHV) is an encephalitis associated arthropod-borne flavivirus. It was first identified in Ilheus City in the northeast Brazil before spreading to a wider geographic range. No specific vaccines or drugs are currently available for the treatment of ILHV infections. The ILHV helicase, like other flavivirus helicases, possesses 5'-triphosphatase activity. This allows it to perform ATP hydrolysis to generate energy as well as sustain double-stranded RNA's unwinding during ILHV genome replication. Thus, ILHV helicase is an ideal target for inhibitor design. We determined the crystal structure of the ILHV helicase at 1.75-Å resolution. We then conducted molecular docking of ATP-Mn to the ILHV helicase. Comparisons with related flavivirus helicases indicated that both the NTP and the RNA-ILHV helicase binding sites were conserved across intra-genus species. This suggested that ILHV helicase adopts an identical mode in recognizing ATP/Mn . However, the P-loop in the active site showed a distinctive conformation; reflecting a different local structural rearrangement. ILHV helicase enzymatic activity was also characterized. This was found to be relatively lower than that of the DENV, ZIKV, MVE, and ALSV helicases. Our structure-guided mutagenesis revealed that R26A, E110A, and Q280A greatly reduced the ATPase activities. Moreover, we docked two small molecule inhibitors of DENV helicase (ST-610 and suramin) to the ILHV helicase and found that these two molecules had the potential to inhibit the activity of ILHV helicase as well. High-resolution ILHV helicase structural analysis demonstrates the key amino acids of ATPase activities and could be useful for the design of inhibitors targeting the helicase of ILHV.</description><subject>Adenosine triphosphatase</subject><subject>Analysis</subject><subject>ATP hydrolysis</subject><subject>Binding sites</subject><subject>Biopharmaceutics</subject><subject>Conformation</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dengue fever</subject><subject>DNA helicase</subject><subject>Double-stranded RNA</subject><subject>Drug development</subject><subject>Drug therapy</subject><subject>Encephalitis</subject><subject>Enzymatic activity</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Hydrolysis</subject><subject>Ilheus virus</subject><subject>Infections</subject><subject>Molecular docking</subject><subject>Mutagenesis</subject><subject>NS3 helicase</subject><subject>Proteins</subject><subject>RNA</subject><subject>RNA helicase</subject><subject>Structure</subject><subject>Suramin</subject><subject>Suramin sodium</subject><subject>Triphosphatase</subject><subject>Unwinding</subject><subject>Vaccines</subject><subject>West Nile virus</subject><subject>Zika virus</subject><issn>2045-3701</issn><issn>2045-3701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUttu1DAQjRCIVqU_wAOyxAt9SPEtccwDUrXislIlJC7PxknGWa8Se7GdiuXrcbqldBG2ZI_G55zRjE9RPCf4kpCmfh0Jq0RTYkpLjIUQZfOoOKWYVyUTmDx-EJ8U5zFucV5cEiyqp8UJqzhtGKWnxfdV2MekRxRTmLs0B0DeoLQBtB43MEd0Y0M-NzDaTkd4g-y0W8JkvYvI-IDA_dpPgMzsuiWJtOtRH-YB9RDt4J4VT4weI5zf3WfFt_fvvq4-ltefPqxXV9dlV0mRSm6k4VwAkSCJ5JJrI1oMPWe0ErjlGmtDK9YSIgiuacMFlVI2LUDVgmSSnRXrg27v9Vbtgp102CuvrbpN-DAoHZLtRlBayl4bTlnfVryFRjaUEM5x3UtsWmyy1tuD1m5uJ-g7cCno8Uj0-MXZjRr8jZKYUM7qLPDqTiD4HzPEpCYbOxhH7cDPUdG6InUjcy8Z-vIf6NbPweVRLSiaf5ET8Rc16NyAdcbnut0iqq4ErvPkcL2UvfwPKu8eJtt5B8bm_BHh4oiQMQl-pkHPMar1l8_HWHrAdsHHGMDcz4NgtVhSHSypsiXVrSVVk0kvHk7ynvLHgOw3t4PZhA</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Wang, De-Ping</creator><creator>Wang, Mei-Yue</creator><creator>Li, Yong-Mei</creator><creator>Shu, Wen</creator><creator>Cui, Wen</creator><creator>Jiang, Fang-Ying</creator><creator>Zhou, Xin</creator><creator>Wang, Wen-Ming</creator><creator>Cao, Ji-Min</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6546-555X</orcidid></search><sort><creationdate>20220415</creationdate><title>Crystal structure of the Ilheus virus helicase: implications for enzyme function and drug design</title><author>Wang, De-Ping ; Wang, Mei-Yue ; Li, Yong-Mei ; Shu, Wen ; Cui, Wen ; Jiang, Fang-Ying ; Zhou, Xin ; Wang, Wen-Ming ; Cao, Ji-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-4f9f447e19e919494af7b0ed432570b4a0af253b117106284729998bee5be9393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine triphosphatase</topic><topic>Analysis</topic><topic>ATP hydrolysis</topic><topic>Binding sites</topic><topic>Biopharmaceutics</topic><topic>Conformation</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dengue fever</topic><topic>DNA helicase</topic><topic>Double-stranded RNA</topic><topic>Drug development</topic><topic>Drug therapy</topic><topic>Encephalitis</topic><topic>Enzymatic activity</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Hydrolysis</topic><topic>Ilheus virus</topic><topic>Infections</topic><topic>Molecular docking</topic><topic>Mutagenesis</topic><topic>NS3 helicase</topic><topic>Proteins</topic><topic>RNA</topic><topic>RNA helicase</topic><topic>Structure</topic><topic>Suramin</topic><topic>Suramin sodium</topic><topic>Triphosphatase</topic><topic>Unwinding</topic><topic>Vaccines</topic><topic>West Nile virus</topic><topic>Zika virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, De-Ping</creatorcontrib><creatorcontrib>Wang, Mei-Yue</creatorcontrib><creatorcontrib>Li, Yong-Mei</creatorcontrib><creatorcontrib>Shu, Wen</creatorcontrib><creatorcontrib>Cui, Wen</creatorcontrib><creatorcontrib>Jiang, Fang-Ying</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Wang, Wen-Ming</creatorcontrib><creatorcontrib>Cao, Ji-Min</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Cell &amp; bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, De-Ping</au><au>Wang, Mei-Yue</au><au>Li, Yong-Mei</au><au>Shu, Wen</au><au>Cui, Wen</au><au>Jiang, Fang-Ying</au><au>Zhou, Xin</au><au>Wang, Wen-Ming</au><au>Cao, Ji-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of the Ilheus virus helicase: implications for enzyme function and drug design</atitle><jtitle>Cell &amp; bioscience</jtitle><addtitle>Cell Biosci</addtitle><date>2022-04-15</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>44</spage><epage>44</epage><pages>44-44</pages><artnum>44</artnum><issn>2045-3701</issn><eissn>2045-3701</eissn><abstract>The Ilheus virus (ILHV) is an encephalitis associated arthropod-borne flavivirus. It was first identified in Ilheus City in the northeast Brazil before spreading to a wider geographic range. No specific vaccines or drugs are currently available for the treatment of ILHV infections. The ILHV helicase, like other flavivirus helicases, possesses 5'-triphosphatase activity. This allows it to perform ATP hydrolysis to generate energy as well as sustain double-stranded RNA's unwinding during ILHV genome replication. Thus, ILHV helicase is an ideal target for inhibitor design. We determined the crystal structure of the ILHV helicase at 1.75-Å resolution. We then conducted molecular docking of ATP-Mn to the ILHV helicase. Comparisons with related flavivirus helicases indicated that both the NTP and the RNA-ILHV helicase binding sites were conserved across intra-genus species. This suggested that ILHV helicase adopts an identical mode in recognizing ATP/Mn . However, the P-loop in the active site showed a distinctive conformation; reflecting a different local structural rearrangement. ILHV helicase enzymatic activity was also characterized. This was found to be relatively lower than that of the DENV, ZIKV, MVE, and ALSV helicases. Our structure-guided mutagenesis revealed that R26A, E110A, and Q280A greatly reduced the ATPase activities. Moreover, we docked two small molecule inhibitors of DENV helicase (ST-610 and suramin) to the ILHV helicase and found that these two molecules had the potential to inhibit the activity of ILHV helicase as well. High-resolution ILHV helicase structural analysis demonstrates the key amino acids of ATPase activities and could be useful for the design of inhibitors targeting the helicase of ILHV.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>35428322</pmid><doi>10.1186/s13578-022-00777-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6546-555X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-3701
ispartof Cell & bioscience, 2022-04, Vol.12 (1), p.44-44, Article 44
issn 2045-3701
2045-3701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a99daf423db54be8982114406d90fb0f
source Publicly Available Content Database; PubMed Central
subjects Adenosine triphosphatase
Analysis
ATP hydrolysis
Binding sites
Biopharmaceutics
Conformation
Crystal structure
Crystals
Dengue fever
DNA helicase
Double-stranded RNA
Drug development
Drug therapy
Encephalitis
Enzymatic activity
Genomes
Genomics
Health aspects
Hydrolysis
Ilheus virus
Infections
Molecular docking
Mutagenesis
NS3 helicase
Proteins
RNA
RNA helicase
Structure
Suramin
Suramin sodium
Triphosphatase
Unwinding
Vaccines
West Nile virus
Zika virus
title Crystal structure of the Ilheus virus helicase: implications for enzyme function and drug design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20the%20Ilheus%20virus%20helicase:%20implications%20for%20enzyme%20function%20and%20drug%20design&rft.jtitle=Cell%20&%20bioscience&rft.au=Wang,%20De-Ping&rft.date=2022-04-15&rft.volume=12&rft.issue=1&rft.spage=44&rft.epage=44&rft.pages=44-44&rft.artnum=44&rft.issn=2045-3701&rft.eissn=2045-3701&rft_id=info:doi/10.1186/s13578-022-00777-8&rft_dat=%3Cgale_doaj_%3EA706447066%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-4f9f447e19e919494af7b0ed432570b4a0af253b117106284729998bee5be9393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2652204417&rft_id=info:pmid/35428322&rft_galeid=A706447066&rfr_iscdi=true