Loading…

Enhanced methane production of vinegar residue by response surface methodology (RSM)

As the by-product of the vinegar production process, a large number of vinegar residue has been abandoned and caused a serious environmental pollution. Anaerobic digestion has been proved to be able to dispose and convert vinegar residue into bioenergy but still need to improve the efficiency. This...

Full description

Saved in:
Bibliographic Details
Published in:AMB Express 2017-05, Vol.7 (1), p.89-89, Article 89
Main Authors: Feng, Jiayu, Zhang, Jiyu, Zhang, Jiafu, He, Yanfeng, Zhang, Ruihong, Chen, Chang, Liu, Guangqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-1ce4ecbbe33c94c6d3b168c7e77465ff1d62d41d9a90d824856306e754886eb53
cites cdi_FETCH-LOGICAL-c536t-1ce4ecbbe33c94c6d3b168c7e77465ff1d62d41d9a90d824856306e754886eb53
container_end_page 89
container_issue 1
container_start_page 89
container_title AMB Express
container_volume 7
creator Feng, Jiayu
Zhang, Jiyu
Zhang, Jiafu
He, Yanfeng
Zhang, Ruihong
Chen, Chang
Liu, Guangqing
description As the by-product of the vinegar production process, a large number of vinegar residue has been abandoned and caused a serious environmental pollution. Anaerobic digestion has been proved to be able to dispose and convert vinegar residue into bioenergy but still need to improve the efficiency. This study applied central composite design of response surface methodology to investigate the influences of feed to inoculum ratio, organic loading, and initial pH on methane production and optimize anaerobic digestion condition. The maximum methane yield of 203.91 mL gVS −1 and biodegradability of 46.99% were obtained at feed to inoculum ratio of 0.5, organic loading of 31.49 gVS L −1 , and initial pH of 7.29, which was considered as the best condition. It has a very significant improvement of 69.48% for methane production and 52.02% for biodegradability compared with our previous study. Additionally, a high methane yield of 182.09 mL gVS −1 was obtained at feed to inoculum ratio of 1.5, organic loading of 46.22 gVS L −1 , and initial pH of 7.32. And it is more appropriate to apply this condition in industrial application owing to the high feed to inoculum ratio and organic loading. Besides, a significant interaction was found between feed to inoculum ratio and organic loading. This study maximized the methane production of vinegar residue and made a good foundation for further study and future industrial application.
doi_str_mv 10.1186/s13568-017-0392-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a9a323bc7534432282f1c1f52f7442d5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a9a323bc7534432282f1c1f52f7442d5</doaj_id><sourcerecordid>1957254374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-1ce4ecbbe33c94c6d3b168c7e77465ff1d62d41d9a90d824856306e754886eb53</originalsourceid><addsrcrecordid>eNp1Ul1rFTEQXUSxpfYH-CILvtSHrfne5EWQUrXQImh9Dtlkst3L3uSa7BbuvzfbreVWcF7mkDlzMpmcqnqL0TnGUnzMmHIhG4TbBlFFGvqiOiZY4QZJzl8e4KPqNOcNKsERUoK_ro6IZJIpJY-r28twZ4IFV29hKgjqXYputtMQQx19fT8E6E2qE-TBzVB3-wXuYshQ5zl5Y-GhM7o4xn5fn_34efPhTfXKmzHD6WM-qX59uby9-NZcf_96dfH5urGciqnBFhjYrgNKrWJWONphIW0LbcsE9x47QRzDThmFnCRMckGRgJYzKQV0nJ5UV6uui2ajd2nYmrTX0Qz64SCmXps0DXYEbZShhHa25ZQxSogkHlvsOfEtY8QtWp9Wrd3cbcFZCFMy4zPR55Uw3Ok-3mvOSAlaBM4eBVL8PUOe9HbIFsaxLDXOWWOphFSkpEJ9_w91E-cUyqo0VrwlnNGWFRZeWTbFnBP4p2Ew0osF9GoBXSygFwvoZYh3h6946vj74YVAVkIupdBDOrj6v6p_AHfquz0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957254374</pqid></control><display><type>article</type><title>Enhanced methane production of vinegar residue by response surface methodology (RSM)</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central(OA)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Free Full-Text Journals in Chemistry</source><creator>Feng, Jiayu ; Zhang, Jiyu ; Zhang, Jiafu ; He, Yanfeng ; Zhang, Ruihong ; Chen, Chang ; Liu, Guangqing</creator><creatorcontrib>Feng, Jiayu ; Zhang, Jiyu ; Zhang, Jiafu ; He, Yanfeng ; Zhang, Ruihong ; Chen, Chang ; Liu, Guangqing</creatorcontrib><description>As the by-product of the vinegar production process, a large number of vinegar residue has been abandoned and caused a serious environmental pollution. Anaerobic digestion has been proved to be able to dispose and convert vinegar residue into bioenergy but still need to improve the efficiency. This study applied central composite design of response surface methodology to investigate the influences of feed to inoculum ratio, organic loading, and initial pH on methane production and optimize anaerobic digestion condition. The maximum methane yield of 203.91 mL gVS −1 and biodegradability of 46.99% were obtained at feed to inoculum ratio of 0.5, organic loading of 31.49 gVS L −1 , and initial pH of 7.29, which was considered as the best condition. It has a very significant improvement of 69.48% for methane production and 52.02% for biodegradability compared with our previous study. Additionally, a high methane yield of 182.09 mL gVS −1 was obtained at feed to inoculum ratio of 1.5, organic loading of 46.22 gVS L −1 , and initial pH of 7.32. And it is more appropriate to apply this condition in industrial application owing to the high feed to inoculum ratio and organic loading. Besides, a significant interaction was found between feed to inoculum ratio and organic loading. This study maximized the methane production of vinegar residue and made a good foundation for further study and future industrial application.</description><identifier>ISSN: 2191-0855</identifier><identifier>EISSN: 2191-0855</identifier><identifier>DOI: 10.1186/s13568-017-0392-3</identifier><identifier>PMID: 28484998</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alkalinity ; Alternative energy sources ; Anaerobic conditions ; Anaerobic digestion ; Biodegradability ; Biomedical and Life Sciences ; Biotechnology ; Cellulose ; Design ; Efficiency ; Experiments ; Fatty acids ; Inoculum ; Interaction ; Life Sciences ; Lignin ; Methane ; Methane production ; Methods ; Microbial Genetics and Genomics ; Microbiology ; Original ; Original Article ; pH effects ; Response surface methodology ; Sludge ; Variables ; Vinegar ; Vinegar residue</subject><ispartof>AMB Express, 2017-05, Vol.7 (1), p.89-89, Article 89</ispartof><rights>The Author(s) 2017</rights><rights>AMB Express is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-1ce4ecbbe33c94c6d3b168c7e77465ff1d62d41d9a90d824856306e754886eb53</citedby><cites>FETCH-LOGICAL-c536t-1ce4ecbbe33c94c6d3b168c7e77465ff1d62d41d9a90d824856306e754886eb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957254374/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957254374?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28484998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Jiayu</creatorcontrib><creatorcontrib>Zhang, Jiyu</creatorcontrib><creatorcontrib>Zhang, Jiafu</creatorcontrib><creatorcontrib>He, Yanfeng</creatorcontrib><creatorcontrib>Zhang, Ruihong</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Liu, Guangqing</creatorcontrib><title>Enhanced methane production of vinegar residue by response surface methodology (RSM)</title><title>AMB Express</title><addtitle>AMB Expr</addtitle><addtitle>AMB Express</addtitle><description>As the by-product of the vinegar production process, a large number of vinegar residue has been abandoned and caused a serious environmental pollution. Anaerobic digestion has been proved to be able to dispose and convert vinegar residue into bioenergy but still need to improve the efficiency. This study applied central composite design of response surface methodology to investigate the influences of feed to inoculum ratio, organic loading, and initial pH on methane production and optimize anaerobic digestion condition. The maximum methane yield of 203.91 mL gVS −1 and biodegradability of 46.99% were obtained at feed to inoculum ratio of 0.5, organic loading of 31.49 gVS L −1 , and initial pH of 7.29, which was considered as the best condition. It has a very significant improvement of 69.48% for methane production and 52.02% for biodegradability compared with our previous study. Additionally, a high methane yield of 182.09 mL gVS −1 was obtained at feed to inoculum ratio of 1.5, organic loading of 46.22 gVS L −1 , and initial pH of 7.32. And it is more appropriate to apply this condition in industrial application owing to the high feed to inoculum ratio and organic loading. Besides, a significant interaction was found between feed to inoculum ratio and organic loading. This study maximized the methane production of vinegar residue and made a good foundation for further study and future industrial application.</description><subject>Alkalinity</subject><subject>Alternative energy sources</subject><subject>Anaerobic conditions</subject><subject>Anaerobic digestion</subject><subject>Biodegradability</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cellulose</subject><subject>Design</subject><subject>Efficiency</subject><subject>Experiments</subject><subject>Fatty acids</subject><subject>Inoculum</subject><subject>Interaction</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Methane</subject><subject>Methane production</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Original</subject><subject>Original Article</subject><subject>pH effects</subject><subject>Response surface methodology</subject><subject>Sludge</subject><subject>Variables</subject><subject>Vinegar</subject><subject>Vinegar residue</subject><issn>2191-0855</issn><issn>2191-0855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ul1rFTEQXUSxpfYH-CILvtSHrfne5EWQUrXQImh9Dtlkst3L3uSa7BbuvzfbreVWcF7mkDlzMpmcqnqL0TnGUnzMmHIhG4TbBlFFGvqiOiZY4QZJzl8e4KPqNOcNKsERUoK_ro6IZJIpJY-r28twZ4IFV29hKgjqXYputtMQQx19fT8E6E2qE-TBzVB3-wXuYshQ5zl5Y-GhM7o4xn5fn_34efPhTfXKmzHD6WM-qX59uby9-NZcf_96dfH5urGciqnBFhjYrgNKrWJWONphIW0LbcsE9x47QRzDThmFnCRMckGRgJYzKQV0nJ5UV6uui2ajd2nYmrTX0Qz64SCmXps0DXYEbZShhHa25ZQxSogkHlvsOfEtY8QtWp9Wrd3cbcFZCFMy4zPR55Uw3Ok-3mvOSAlaBM4eBVL8PUOe9HbIFsaxLDXOWWOphFSkpEJ9_w91E-cUyqo0VrwlnNGWFRZeWTbFnBP4p2Ew0osF9GoBXSygFwvoZYh3h6946vj74YVAVkIupdBDOrj6v6p_AHfquz0</recordid><startdate>20170508</startdate><enddate>20170508</enddate><creator>Feng, Jiayu</creator><creator>Zhang, Jiyu</creator><creator>Zhang, Jiafu</creator><creator>He, Yanfeng</creator><creator>Zhang, Ruihong</creator><creator>Chen, Chang</creator><creator>Liu, Guangqing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170508</creationdate><title>Enhanced methane production of vinegar residue by response surface methodology (RSM)</title><author>Feng, Jiayu ; Zhang, Jiyu ; Zhang, Jiafu ; He, Yanfeng ; Zhang, Ruihong ; Chen, Chang ; Liu, Guangqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-1ce4ecbbe33c94c6d3b168c7e77465ff1d62d41d9a90d824856306e754886eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkalinity</topic><topic>Alternative energy sources</topic><topic>Anaerobic conditions</topic><topic>Anaerobic digestion</topic><topic>Biodegradability</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cellulose</topic><topic>Design</topic><topic>Efficiency</topic><topic>Experiments</topic><topic>Fatty acids</topic><topic>Inoculum</topic><topic>Interaction</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Methane</topic><topic>Methane production</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Original</topic><topic>Original Article</topic><topic>pH effects</topic><topic>Response surface methodology</topic><topic>Sludge</topic><topic>Variables</topic><topic>Vinegar</topic><topic>Vinegar residue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Jiayu</creatorcontrib><creatorcontrib>Zhang, Jiyu</creatorcontrib><creatorcontrib>Zhang, Jiafu</creatorcontrib><creatorcontrib>He, Yanfeng</creatorcontrib><creatorcontrib>Zhang, Ruihong</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Liu, Guangqing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>AMB Express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Jiayu</au><au>Zhang, Jiyu</au><au>Zhang, Jiafu</au><au>He, Yanfeng</au><au>Zhang, Ruihong</au><au>Chen, Chang</au><au>Liu, Guangqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced methane production of vinegar residue by response surface methodology (RSM)</atitle><jtitle>AMB Express</jtitle><stitle>AMB Expr</stitle><addtitle>AMB Express</addtitle><date>2017-05-08</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>89</spage><epage>89</epage><pages>89-89</pages><artnum>89</artnum><issn>2191-0855</issn><eissn>2191-0855</eissn><abstract>As the by-product of the vinegar production process, a large number of vinegar residue has been abandoned and caused a serious environmental pollution. Anaerobic digestion has been proved to be able to dispose and convert vinegar residue into bioenergy but still need to improve the efficiency. This study applied central composite design of response surface methodology to investigate the influences of feed to inoculum ratio, organic loading, and initial pH on methane production and optimize anaerobic digestion condition. The maximum methane yield of 203.91 mL gVS −1 and biodegradability of 46.99% were obtained at feed to inoculum ratio of 0.5, organic loading of 31.49 gVS L −1 , and initial pH of 7.29, which was considered as the best condition. It has a very significant improvement of 69.48% for methane production and 52.02% for biodegradability compared with our previous study. Additionally, a high methane yield of 182.09 mL gVS −1 was obtained at feed to inoculum ratio of 1.5, organic loading of 46.22 gVS L −1 , and initial pH of 7.32. And it is more appropriate to apply this condition in industrial application owing to the high feed to inoculum ratio and organic loading. Besides, a significant interaction was found between feed to inoculum ratio and organic loading. This study maximized the methane production of vinegar residue and made a good foundation for further study and future industrial application.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28484998</pmid><doi>10.1186/s13568-017-0392-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2191-0855
ispartof AMB Express, 2017-05, Vol.7 (1), p.89-89, Article 89
issn 2191-0855
2191-0855
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a9a323bc7534432282f1c1f52f7442d5
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central(OA); Springer Nature - SpringerLink Journals - Fully Open Access ; Free Full-Text Journals in Chemistry
subjects Alkalinity
Alternative energy sources
Anaerobic conditions
Anaerobic digestion
Biodegradability
Biomedical and Life Sciences
Biotechnology
Cellulose
Design
Efficiency
Experiments
Fatty acids
Inoculum
Interaction
Life Sciences
Lignin
Methane
Methane production
Methods
Microbial Genetics and Genomics
Microbiology
Original
Original Article
pH effects
Response surface methodology
Sludge
Variables
Vinegar
Vinegar residue
title Enhanced methane production of vinegar residue by response surface methodology (RSM)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20methane%20production%20of%20vinegar%20residue%20by%20response%20surface%20methodology%20(RSM)&rft.jtitle=AMB%20Express&rft.au=Feng,%20Jiayu&rft.date=2017-05-08&rft.volume=7&rft.issue=1&rft.spage=89&rft.epage=89&rft.pages=89-89&rft.artnum=89&rft.issn=2191-0855&rft.eissn=2191-0855&rft_id=info:doi/10.1186/s13568-017-0392-3&rft_dat=%3Cproquest_doaj_%3E1957254374%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-1ce4ecbbe33c94c6d3b168c7e77465ff1d62d41d9a90d824856306e754886eb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957254374&rft_id=info:pmid/28484998&rfr_iscdi=true