Loading…
The VRNetzer platform enables interactive network analysis in Virtual Reality
Networks provide a powerful representation of interacting components within complex systems, making them ideal for visually and analytically exploring big data. However, the size and complexity of many networks render static visualizations on typically-sized paper or screens impractical, resulting i...
Saved in:
Published in: | Nature communications 2021-04, Vol.12 (1), p.2432-2432, Article 2432 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-34aabd58f0798548933237a396d9dd0b7433bd26f6189f236af7dadf345230283 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-34aabd58f0798548933237a396d9dd0b7433bd26f6189f236af7dadf345230283 |
container_end_page | 2432 |
container_issue | 1 |
container_start_page | 2432 |
container_title | Nature communications |
container_volume | 12 |
creator | Pirch, Sebastian Müller, Felix Iofinova, Eugenia Pazmandi, Julia Hütter, Christiane V. R. Chiettini, Martin Sin, Celine Boztug, Kaan Podkosova, Iana Kaufmann, Hannes Menche, Jörg |
description | Networks provide a powerful representation of interacting components within complex systems, making them ideal for visually and analytically exploring big data. However, the size and complexity of many networks render static visualizations on typically-sized paper or screens impractical, resulting in proverbial ‘hairballs’. Here, we introduce a Virtual Reality (VR) platform that overcomes these limitations by facilitating the thorough visual, and interactive, exploration of large networks. Our platform allows maximal customization and extendibility, through the import of custom code for data analysis, integration of external databases, and design of arbitrary user interface elements, among other features. As a proof of concept, we show how our platform can be used to interactively explore genome-scale molecular networks to identify genes associated with rare diseases and understand how they might contribute to disease development. Our platform represents a general purpose, VR-based data exploration platform for large and diverse data types by providing an interface that facilitates the interaction between human intuition and state-of-the-art analysis methods.
Data-rich networks can be difficult to interpret beyond a certain size. Here, the authors introduce a platform that uses virtual reality to allow the visual exploration of large networks, while interfacing with data repositories and other analytical methods to improve the interpretation of big data. |
doi_str_mv | 10.1038/s41467-021-22570-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a9c0ec8e93de4f90bf7ae10005d40be9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a9c0ec8e93de4f90bf7ae10005d40be9</doaj_id><sourcerecordid>2517102818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-34aabd58f0798548933237a396d9dd0b7433bd26f6189f236af7dadf345230283</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCIVkv_AAcUiQuXgL8S2xckVBWoVECqSq_WJJ5ss2TjxXa6Wn493k0pLQd8sTXvzfO8eYS8ZPQto0K_i5LJWpWUs5LzStFy-4QccypZyRQXTx-8j8hJjCuajzBMS_mcHAmhjeBaHJMvVzdYXF9-xfQLQ7EZIHU-rAscoRkwFv2YMECb-lssRkxbH34UMMKwi_0eLK77kCYYikuEoU-7F-RZB0PEk7t7Qb5_PLs6_VxefPt0fvrhomwrSVMpJEDjKt1RZXQl8yyCCwXC1M44RxslhWgcr7uaadNxUUOnHLhOyIoLmudekPNZ13lY2U3o1xB21kNvDwUflhZC6tsBLZiWYqvRCIeyM7TpFCDLy6icpE0uL8j7WWszNWt0LY4pwPBI9DEy9jd26W-tpnXFapkF3twJBP9zwpjsuo8tDgOM6KdoecU0Z0bRPfX1P9SVn0Le54GlWPbG9u74zGqDjzFgdz8Mo3Yfvp3Dtzl8ewjfbnPTq4c27lv-RJ0JYibEDI1LDH___o_sb-e3urI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517102818</pqid></control><display><type>article</type><title>The VRNetzer platform enables interactive network analysis in Virtual Reality</title><source>Open Access: PubMed Central</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Pirch, Sebastian ; Müller, Felix ; Iofinova, Eugenia ; Pazmandi, Julia ; Hütter, Christiane V. R. ; Chiettini, Martin ; Sin, Celine ; Boztug, Kaan ; Podkosova, Iana ; Kaufmann, Hannes ; Menche, Jörg</creator><creatorcontrib>Pirch, Sebastian ; Müller, Felix ; Iofinova, Eugenia ; Pazmandi, Julia ; Hütter, Christiane V. R. ; Chiettini, Martin ; Sin, Celine ; Boztug, Kaan ; Podkosova, Iana ; Kaufmann, Hannes ; Menche, Jörg</creatorcontrib><description>Networks provide a powerful representation of interacting components within complex systems, making them ideal for visually and analytically exploring big data. However, the size and complexity of many networks render static visualizations on typically-sized paper or screens impractical, resulting in proverbial ‘hairballs’. Here, we introduce a Virtual Reality (VR) platform that overcomes these limitations by facilitating the thorough visual, and interactive, exploration of large networks. Our platform allows maximal customization and extendibility, through the import of custom code for data analysis, integration of external databases, and design of arbitrary user interface elements, among other features. As a proof of concept, we show how our platform can be used to interactively explore genome-scale molecular networks to identify genes associated with rare diseases and understand how they might contribute to disease development. Our platform represents a general purpose, VR-based data exploration platform for large and diverse data types by providing an interface that facilitates the interaction between human intuition and state-of-the-art analysis methods.
Data-rich networks can be difficult to interpret beyond a certain size. Here, the authors introduce a platform that uses virtual reality to allow the visual exploration of large networks, while interfacing with data repositories and other analytical methods to improve the interpretation of big data.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-22570-w</identifier><identifier>PMID: 33893283</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2398 ; 631/114/2408 ; 631/553/794 ; 639/166/985 ; 692/4017 ; Analytical methods ; Big Data ; Complex systems ; Complexity ; Computer applications ; Data analysis ; Exploration ; Genomes ; Humanities and Social Sciences ; multidisciplinary ; Network analysis ; Rare diseases ; Science ; Science (multidisciplinary) ; Virtual networks ; Virtual reality</subject><ispartof>Nature communications, 2021-04, Vol.12 (1), p.2432-2432, Article 2432</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-34aabd58f0798548933237a396d9dd0b7433bd26f6189f236af7dadf345230283</citedby><cites>FETCH-LOGICAL-c540t-34aabd58f0798548933237a396d9dd0b7433bd26f6189f236af7dadf345230283</cites><orcidid>0000-0002-1583-6404 ; 0000-0002-0322-9869 ; 0000-0002-4975-4618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2517102818/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2517102818?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33893283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pirch, Sebastian</creatorcontrib><creatorcontrib>Müller, Felix</creatorcontrib><creatorcontrib>Iofinova, Eugenia</creatorcontrib><creatorcontrib>Pazmandi, Julia</creatorcontrib><creatorcontrib>Hütter, Christiane V. R.</creatorcontrib><creatorcontrib>Chiettini, Martin</creatorcontrib><creatorcontrib>Sin, Celine</creatorcontrib><creatorcontrib>Boztug, Kaan</creatorcontrib><creatorcontrib>Podkosova, Iana</creatorcontrib><creatorcontrib>Kaufmann, Hannes</creatorcontrib><creatorcontrib>Menche, Jörg</creatorcontrib><title>The VRNetzer platform enables interactive network analysis in Virtual Reality</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Networks provide a powerful representation of interacting components within complex systems, making them ideal for visually and analytically exploring big data. However, the size and complexity of many networks render static visualizations on typically-sized paper or screens impractical, resulting in proverbial ‘hairballs’. Here, we introduce a Virtual Reality (VR) platform that overcomes these limitations by facilitating the thorough visual, and interactive, exploration of large networks. Our platform allows maximal customization and extendibility, through the import of custom code for data analysis, integration of external databases, and design of arbitrary user interface elements, among other features. As a proof of concept, we show how our platform can be used to interactively explore genome-scale molecular networks to identify genes associated with rare diseases and understand how they might contribute to disease development. Our platform represents a general purpose, VR-based data exploration platform for large and diverse data types by providing an interface that facilitates the interaction between human intuition and state-of-the-art analysis methods.
Data-rich networks can be difficult to interpret beyond a certain size. Here, the authors introduce a platform that uses virtual reality to allow the visual exploration of large networks, while interfacing with data repositories and other analytical methods to improve the interpretation of big data.</description><subject>631/114/2398</subject><subject>631/114/2408</subject><subject>631/553/794</subject><subject>639/166/985</subject><subject>692/4017</subject><subject>Analytical methods</subject><subject>Big Data</subject><subject>Complex systems</subject><subject>Complexity</subject><subject>Computer applications</subject><subject>Data analysis</subject><subject>Exploration</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Network analysis</subject><subject>Rare diseases</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Virtual networks</subject><subject>Virtual reality</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1v1DAQtRCIVkv_AAcUiQuXgL8S2xckVBWoVECqSq_WJJ5ss2TjxXa6Wn493k0pLQd8sTXvzfO8eYS8ZPQto0K_i5LJWpWUs5LzStFy-4QccypZyRQXTx-8j8hJjCuajzBMS_mcHAmhjeBaHJMvVzdYXF9-xfQLQ7EZIHU-rAscoRkwFv2YMECb-lssRkxbH34UMMKwi_0eLK77kCYYikuEoU-7F-RZB0PEk7t7Qb5_PLs6_VxefPt0fvrhomwrSVMpJEDjKt1RZXQl8yyCCwXC1M44RxslhWgcr7uaadNxUUOnHLhOyIoLmudekPNZ13lY2U3o1xB21kNvDwUflhZC6tsBLZiWYqvRCIeyM7TpFCDLy6icpE0uL8j7WWszNWt0LY4pwPBI9DEy9jd26W-tpnXFapkF3twJBP9zwpjsuo8tDgOM6KdoecU0Z0bRPfX1P9SVn0Le54GlWPbG9u74zGqDjzFgdz8Mo3Yfvp3Dtzl8ewjfbnPTq4c27lv-RJ0JYibEDI1LDH___o_sb-e3urI</recordid><startdate>20210423</startdate><enddate>20210423</enddate><creator>Pirch, Sebastian</creator><creator>Müller, Felix</creator><creator>Iofinova, Eugenia</creator><creator>Pazmandi, Julia</creator><creator>Hütter, Christiane V. R.</creator><creator>Chiettini, Martin</creator><creator>Sin, Celine</creator><creator>Boztug, Kaan</creator><creator>Podkosova, Iana</creator><creator>Kaufmann, Hannes</creator><creator>Menche, Jörg</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1583-6404</orcidid><orcidid>https://orcid.org/0000-0002-0322-9869</orcidid><orcidid>https://orcid.org/0000-0002-4975-4618</orcidid></search><sort><creationdate>20210423</creationdate><title>The VRNetzer platform enables interactive network analysis in Virtual Reality</title><author>Pirch, Sebastian ; Müller, Felix ; Iofinova, Eugenia ; Pazmandi, Julia ; Hütter, Christiane V. R. ; Chiettini, Martin ; Sin, Celine ; Boztug, Kaan ; Podkosova, Iana ; Kaufmann, Hannes ; Menche, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-34aabd58f0798548933237a396d9dd0b7433bd26f6189f236af7dadf345230283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114/2398</topic><topic>631/114/2408</topic><topic>631/553/794</topic><topic>639/166/985</topic><topic>692/4017</topic><topic>Analytical methods</topic><topic>Big Data</topic><topic>Complex systems</topic><topic>Complexity</topic><topic>Computer applications</topic><topic>Data analysis</topic><topic>Exploration</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Network analysis</topic><topic>Rare diseases</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Virtual networks</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pirch, Sebastian</creatorcontrib><creatorcontrib>Müller, Felix</creatorcontrib><creatorcontrib>Iofinova, Eugenia</creatorcontrib><creatorcontrib>Pazmandi, Julia</creatorcontrib><creatorcontrib>Hütter, Christiane V. R.</creatorcontrib><creatorcontrib>Chiettini, Martin</creatorcontrib><creatorcontrib>Sin, Celine</creatorcontrib><creatorcontrib>Boztug, Kaan</creatorcontrib><creatorcontrib>Podkosova, Iana</creatorcontrib><creatorcontrib>Kaufmann, Hannes</creatorcontrib><creatorcontrib>Menche, Jörg</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pirch, Sebastian</au><au>Müller, Felix</au><au>Iofinova, Eugenia</au><au>Pazmandi, Julia</au><au>Hütter, Christiane V. R.</au><au>Chiettini, Martin</au><au>Sin, Celine</au><au>Boztug, Kaan</au><au>Podkosova, Iana</au><au>Kaufmann, Hannes</au><au>Menche, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The VRNetzer platform enables interactive network analysis in Virtual Reality</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-04-23</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>2432</spage><epage>2432</epage><pages>2432-2432</pages><artnum>2432</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Networks provide a powerful representation of interacting components within complex systems, making them ideal for visually and analytically exploring big data. However, the size and complexity of many networks render static visualizations on typically-sized paper or screens impractical, resulting in proverbial ‘hairballs’. Here, we introduce a Virtual Reality (VR) platform that overcomes these limitations by facilitating the thorough visual, and interactive, exploration of large networks. Our platform allows maximal customization and extendibility, through the import of custom code for data analysis, integration of external databases, and design of arbitrary user interface elements, among other features. As a proof of concept, we show how our platform can be used to interactively explore genome-scale molecular networks to identify genes associated with rare diseases and understand how they might contribute to disease development. Our platform represents a general purpose, VR-based data exploration platform for large and diverse data types by providing an interface that facilitates the interaction between human intuition and state-of-the-art analysis methods.
Data-rich networks can be difficult to interpret beyond a certain size. Here, the authors introduce a platform that uses virtual reality to allow the visual exploration of large networks, while interfacing with data repositories and other analytical methods to improve the interpretation of big data.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33893283</pmid><doi>10.1038/s41467-021-22570-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1583-6404</orcidid><orcidid>https://orcid.org/0000-0002-0322-9869</orcidid><orcidid>https://orcid.org/0000-0002-4975-4618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-04, Vol.12 (1), p.2432-2432, Article 2432 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a9c0ec8e93de4f90bf7ae10005d40be9 |
source | Open Access: PubMed Central; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/2398 631/114/2408 631/553/794 639/166/985 692/4017 Analytical methods Big Data Complex systems Complexity Computer applications Data analysis Exploration Genomes Humanities and Social Sciences multidisciplinary Network analysis Rare diseases Science Science (multidisciplinary) Virtual networks Virtual reality |
title | The VRNetzer platform enables interactive network analysis in Virtual Reality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20VRNetzer%20platform%20enables%20interactive%20network%20analysis%20in%20Virtual%20Reality&rft.jtitle=Nature%20communications&rft.au=Pirch,%20Sebastian&rft.date=2021-04-23&rft.volume=12&rft.issue=1&rft.spage=2432&rft.epage=2432&rft.pages=2432-2432&rft.artnum=2432&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-22570-w&rft_dat=%3Cproquest_doaj_%3E2517102818%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-34aabd58f0798548933237a396d9dd0b7433bd26f6189f236af7dadf345230283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2517102818&rft_id=info:pmid/33893283&rfr_iscdi=true |