Loading…

Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050

Predicting future air quality in Australian cities dominated by eucalypt emissions requires an understanding of their emission potentials in a warmer climate. Here we measure the temperature response in isoprene emissions from saplings of four different Eucalyptus species grown under current and fut...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2020-05, Vol.20 (10), p.6193-6206
Main Authors: Emmerson, Kathryn M, Possell, Malcolm, Aspinwall, Michael J, Pfautsch, Sebastian, Tjoelker, Mark G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-8a99ef1cb6f27c700c59739230b4bbc8e63b3ec27977b1c2197841bf66ed3443
cites cdi_FETCH-LOGICAL-c480t-8a99ef1cb6f27c700c59739230b4bbc8e63b3ec27977b1c2197841bf66ed3443
container_end_page 6206
container_issue 10
container_start_page 6193
container_title Atmospheric chemistry and physics
container_volume 20
creator Emmerson, Kathryn M
Possell, Malcolm
Aspinwall, Michael J
Pfautsch, Sebastian
Tjoelker, Mark G
description Predicting future air quality in Australian cities dominated by eucalypt emissions requires an understanding of their emission potentials in a warmer climate. Here we measure the temperature response in isoprene emissions from saplings of four different Eucalyptus species grown under current and future average summertime temperature conditions. The future conditions represent a 2050 climate under Representative Concentration Pathway 8.5, with average daytime temperatures of 294.5 K. Ramping the temperature from 293 to 328 K resulted in these eucalypts emitting isoprene at temperatures 4–9 K higher than the default maximum emission temperature in the Model of Emissions of Gases and Aerosols from Nature (MEGAN). New basal emission rate measurements were obtained at the standard conditions of 303 K leaf temperature and 1000 µmol m−2 s−1 photosynthetically active radiation and converted into landscape emission factors. We applied the eucalypt temperature responses and emission factors to Australian trees within MEGAN and ran the CSIRO Chemical Transport Model for three summertime campaigns in Australia. Compared to the default model, the new temperature responses resulted in less isoprene emission in the morning and more during hot afternoons, improving the statistical fit of modelled to observed ambient isoprene. Compared to current conditions, an additional 2 ppb of isoprene is predicted in 2050, causing hourly increases up to 21 ppb of ozone and 24-hourly increases of 0.4 µg m−3 of aerosol in Sydney. A 550 ppm CO2 atmosphere in 2050 mitigates these peak Sydney ozone mixing ratios by 4 ppb. Nevertheless, these forecasted increases in ozone are up to one-fifth of the hourly Australian air quality limit, suggesting that anthropogenic NOx should be further reduced to maintain healthy air quality in future.
doi_str_mv 10.5194/acp-20-6193-2020
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a9c1993454cb488eb0a4a51614e8139a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A625112761</galeid><doaj_id>oai_doaj_org_article_a9c1993454cb488eb0a4a51614e8139a</doaj_id><sourcerecordid>A625112761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-8a99ef1cb6f27c700c59739230b4bbc8e63b3ec27977b1c2197841bf66ed3443</originalsourceid><addsrcrecordid>eNptkk2LFDEQhhtRcF29ewx48tC7-ep05zgsfgwsCDr3UJ2pns0w3elN0uL8AP_31jiiDkgdKnl56iUp3qp6K_hNI6y-BT_XktdGWEVd8mfVlTAdr1sl9fN_zi-rVznvOZcNF_qq-rnBccYEZUnIEuY5ThnZiJBJGHEqmQ0pjgwXD4fjTNdd-I4sTDnsHgr1Ell5IGGcwRcWB7ZacklwCDCxkOOccEKGY8g5kDWLE4OQ2ONCRDnSPJO84a-rFwMcMr753a-rzccPm7vP9f2XT-u71X3tdcdL3YG1OAjfm0G2vuXcN7ZVVire6773HRrVK_SytW3bCy-FbTst-sEY3Cqt1XW1PttuI-zdnMII6egiBPdLiGnnIJXgD-jAemGt0o32ve467DloaIQRGjuhLJDXu7PXnOLjgrm4fVzSRK93Ugsq0zbmL7UDMg3TEGk3nrbh3crIRgjZGkHUzX8oqi0tzscJh0D6xcD7iwFiCv4oO1hydutvXy9ZfmZ9ijknHP58XHB3io6j6DjJ3Sk67hQd9QSwDrW_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414146756</pqid></control><display><type>article</type><title>Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050</title><source>Publicly Available Content (ProQuest)</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Emmerson, Kathryn M ; Possell, Malcolm ; Aspinwall, Michael J ; Pfautsch, Sebastian ; Tjoelker, Mark G</creator><creatorcontrib>Emmerson, Kathryn M ; Possell, Malcolm ; Aspinwall, Michael J ; Pfautsch, Sebastian ; Tjoelker, Mark G</creatorcontrib><description>Predicting future air quality in Australian cities dominated by eucalypt emissions requires an understanding of their emission potentials in a warmer climate. Here we measure the temperature response in isoprene emissions from saplings of four different Eucalyptus species grown under current and future average summertime temperature conditions. The future conditions represent a 2050 climate under Representative Concentration Pathway 8.5, with average daytime temperatures of 294.5 K. Ramping the temperature from 293 to 328 K resulted in these eucalypts emitting isoprene at temperatures 4–9 K higher than the default maximum emission temperature in the Model of Emissions of Gases and Aerosols from Nature (MEGAN). New basal emission rate measurements were obtained at the standard conditions of 303 K leaf temperature and 1000 µmol m−2 s−1 photosynthetically active radiation and converted into landscape emission factors. We applied the eucalypt temperature responses and emission factors to Australian trees within MEGAN and ran the CSIRO Chemical Transport Model for three summertime campaigns in Australia. Compared to the default model, the new temperature responses resulted in less isoprene emission in the morning and more during hot afternoons, improving the statistical fit of modelled to observed ambient isoprene. Compared to current conditions, an additional 2 ppb of isoprene is predicted in 2050, causing hourly increases up to 21 ppb of ozone and 24-hourly increases of 0.4 µg m−3 of aerosol in Sydney. A 550 ppm CO2 atmosphere in 2050 mitigates these peak Sydney ozone mixing ratios by 4 ppb. Nevertheless, these forecasted increases in ozone are up to one-fifth of the hourly Australian air quality limit, suggesting that anthropogenic NOx should be further reduced to maintain healthy air quality in future.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-20-6193-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosols ; Air ; Air pollution ; Air pollution control ; Air quality ; Anthropogenic factors ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Chemical transport ; Cities and towns ; Climate ; Climate change ; Emission measurements ; Emissions ; Emissions (Pollution) ; Environmental conditions ; Eucalyptus ; Flowers &amp; plants ; Gases ; Human influences ; Isoprene ; Isoprene emissions ; Mathematical models ; Mixing ratio ; Nature ; Nitrogen compounds ; Oxides ; Ozone ; Ozone mixing ratio ; Photosynthesis ; Photosynthetically active radiation ; Radiation ; Radiation (Physics) ; Summer ; Temperature ; Temperature measurement</subject><ispartof>Atmospheric chemistry and physics, 2020-05, Vol.20 (10), p.6193-6206</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-8a99ef1cb6f27c700c59739230b4bbc8e63b3ec27977b1c2197841bf66ed3443</citedby><cites>FETCH-LOGICAL-c480t-8a99ef1cb6f27c700c59739230b4bbc8e63b3ec27977b1c2197841bf66ed3443</cites><orcidid>0000-0002-0727-0340 ; 0000-0001-5376-8433 ; 0000-0003-4607-5238 ; 0000-0002-4390-4195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414146756/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414146756?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Emmerson, Kathryn M</creatorcontrib><creatorcontrib>Possell, Malcolm</creatorcontrib><creatorcontrib>Aspinwall, Michael J</creatorcontrib><creatorcontrib>Pfautsch, Sebastian</creatorcontrib><creatorcontrib>Tjoelker, Mark G</creatorcontrib><title>Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050</title><title>Atmospheric chemistry and physics</title><description>Predicting future air quality in Australian cities dominated by eucalypt emissions requires an understanding of their emission potentials in a warmer climate. Here we measure the temperature response in isoprene emissions from saplings of four different Eucalyptus species grown under current and future average summertime temperature conditions. The future conditions represent a 2050 climate under Representative Concentration Pathway 8.5, with average daytime temperatures of 294.5 K. Ramping the temperature from 293 to 328 K resulted in these eucalypts emitting isoprene at temperatures 4–9 K higher than the default maximum emission temperature in the Model of Emissions of Gases and Aerosols from Nature (MEGAN). New basal emission rate measurements were obtained at the standard conditions of 303 K leaf temperature and 1000 µmol m−2 s−1 photosynthetically active radiation and converted into landscape emission factors. We applied the eucalypt temperature responses and emission factors to Australian trees within MEGAN and ran the CSIRO Chemical Transport Model for three summertime campaigns in Australia. Compared to the default model, the new temperature responses resulted in less isoprene emission in the morning and more during hot afternoons, improving the statistical fit of modelled to observed ambient isoprene. Compared to current conditions, an additional 2 ppb of isoprene is predicted in 2050, causing hourly increases up to 21 ppb of ozone and 24-hourly increases of 0.4 µg m−3 of aerosol in Sydney. A 550 ppm CO2 atmosphere in 2050 mitigates these peak Sydney ozone mixing ratios by 4 ppb. Nevertheless, these forecasted increases in ozone are up to one-fifth of the hourly Australian air quality limit, suggesting that anthropogenic NOx should be further reduced to maintain healthy air quality in future.</description><subject>Aerosols</subject><subject>Air</subject><subject>Air pollution</subject><subject>Air pollution control</subject><subject>Air quality</subject><subject>Anthropogenic factors</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Chemical transport</subject><subject>Cities and towns</subject><subject>Climate</subject><subject>Climate change</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Emissions (Pollution)</subject><subject>Environmental conditions</subject><subject>Eucalyptus</subject><subject>Flowers &amp; plants</subject><subject>Gases</subject><subject>Human influences</subject><subject>Isoprene</subject><subject>Isoprene emissions</subject><subject>Mathematical models</subject><subject>Mixing ratio</subject><subject>Nature</subject><subject>Nitrogen compounds</subject><subject>Oxides</subject><subject>Ozone</subject><subject>Ozone mixing ratio</subject><subject>Photosynthesis</subject><subject>Photosynthetically active radiation</subject><subject>Radiation</subject><subject>Radiation (Physics)</subject><subject>Summer</subject><subject>Temperature</subject><subject>Temperature measurement</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk2LFDEQhhtRcF29ewx48tC7-ep05zgsfgwsCDr3UJ2pns0w3elN0uL8AP_31jiiDkgdKnl56iUp3qp6K_hNI6y-BT_XktdGWEVd8mfVlTAdr1sl9fN_zi-rVznvOZcNF_qq-rnBccYEZUnIEuY5ThnZiJBJGHEqmQ0pjgwXD4fjTNdd-I4sTDnsHgr1Ell5IGGcwRcWB7ZacklwCDCxkOOccEKGY8g5kDWLE4OQ2ONCRDnSPJO84a-rFwMcMr753a-rzccPm7vP9f2XT-u71X3tdcdL3YG1OAjfm0G2vuXcN7ZVVire6773HRrVK_SytW3bCy-FbTst-sEY3Cqt1XW1PttuI-zdnMII6egiBPdLiGnnIJXgD-jAemGt0o32ve467DloaIQRGjuhLJDXu7PXnOLjgrm4fVzSRK93Ugsq0zbmL7UDMg3TEGk3nrbh3crIRgjZGkHUzX8oqi0tzscJh0D6xcD7iwFiCv4oO1hydutvXy9ZfmZ9ijknHP58XHB3io6j6DjJ3Sk67hQd9QSwDrW_</recordid><startdate>20200528</startdate><enddate>20200528</enddate><creator>Emmerson, Kathryn M</creator><creator>Possell, Malcolm</creator><creator>Aspinwall, Michael J</creator><creator>Pfautsch, Sebastian</creator><creator>Tjoelker, Mark G</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0727-0340</orcidid><orcidid>https://orcid.org/0000-0001-5376-8433</orcidid><orcidid>https://orcid.org/0000-0003-4607-5238</orcidid><orcidid>https://orcid.org/0000-0002-4390-4195</orcidid></search><sort><creationdate>20200528</creationdate><title>Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050</title><author>Emmerson, Kathryn M ; Possell, Malcolm ; Aspinwall, Michael J ; Pfautsch, Sebastian ; Tjoelker, Mark G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-8a99ef1cb6f27c700c59739230b4bbc8e63b3ec27977b1c2197841bf66ed3443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosols</topic><topic>Air</topic><topic>Air pollution</topic><topic>Air pollution control</topic><topic>Air quality</topic><topic>Anthropogenic factors</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Chemical transport</topic><topic>Cities and towns</topic><topic>Climate</topic><topic>Climate change</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Emissions (Pollution)</topic><topic>Environmental conditions</topic><topic>Eucalyptus</topic><topic>Flowers &amp; plants</topic><topic>Gases</topic><topic>Human influences</topic><topic>Isoprene</topic><topic>Isoprene emissions</topic><topic>Mathematical models</topic><topic>Mixing ratio</topic><topic>Nature</topic><topic>Nitrogen compounds</topic><topic>Oxides</topic><topic>Ozone</topic><topic>Ozone mixing ratio</topic><topic>Photosynthesis</topic><topic>Photosynthetically active radiation</topic><topic>Radiation</topic><topic>Radiation (Physics)</topic><topic>Summer</topic><topic>Temperature</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emmerson, Kathryn M</creatorcontrib><creatorcontrib>Possell, Malcolm</creatorcontrib><creatorcontrib>Aspinwall, Michael J</creatorcontrib><creatorcontrib>Pfautsch, Sebastian</creatorcontrib><creatorcontrib>Tjoelker, Mark G</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emmerson, Kathryn M</au><au>Possell, Malcolm</au><au>Aspinwall, Michael J</au><au>Pfautsch, Sebastian</au><au>Tjoelker, Mark G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2020-05-28</date><risdate>2020</risdate><volume>20</volume><issue>10</issue><spage>6193</spage><epage>6206</epage><pages>6193-6206</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Predicting future air quality in Australian cities dominated by eucalypt emissions requires an understanding of their emission potentials in a warmer climate. Here we measure the temperature response in isoprene emissions from saplings of four different Eucalyptus species grown under current and future average summertime temperature conditions. The future conditions represent a 2050 climate under Representative Concentration Pathway 8.5, with average daytime temperatures of 294.5 K. Ramping the temperature from 293 to 328 K resulted in these eucalypts emitting isoprene at temperatures 4–9 K higher than the default maximum emission temperature in the Model of Emissions of Gases and Aerosols from Nature (MEGAN). New basal emission rate measurements were obtained at the standard conditions of 303 K leaf temperature and 1000 µmol m−2 s−1 photosynthetically active radiation and converted into landscape emission factors. We applied the eucalypt temperature responses and emission factors to Australian trees within MEGAN and ran the CSIRO Chemical Transport Model for three summertime campaigns in Australia. Compared to the default model, the new temperature responses resulted in less isoprene emission in the morning and more during hot afternoons, improving the statistical fit of modelled to observed ambient isoprene. Compared to current conditions, an additional 2 ppb of isoprene is predicted in 2050, causing hourly increases up to 21 ppb of ozone and 24-hourly increases of 0.4 µg m−3 of aerosol in Sydney. A 550 ppm CO2 atmosphere in 2050 mitigates these peak Sydney ozone mixing ratios by 4 ppb. Nevertheless, these forecasted increases in ozone are up to one-fifth of the hourly Australian air quality limit, suggesting that anthropogenic NOx should be further reduced to maintain healthy air quality in future.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-20-6193-2020</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0727-0340</orcidid><orcidid>https://orcid.org/0000-0001-5376-8433</orcidid><orcidid>https://orcid.org/0000-0003-4607-5238</orcidid><orcidid>https://orcid.org/0000-0002-4390-4195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2020-05, Vol.20 (10), p.6193-6206
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a9c1993454cb488eb0a4a51614e8139a
source Publicly Available Content (ProQuest); Directory of Open Access Journals; Alma/SFX Local Collection
subjects Aerosols
Air
Air pollution
Air pollution control
Air quality
Anthropogenic factors
Carbon dioxide
Carbon dioxide atmospheric concentrations
Chemical transport
Cities and towns
Climate
Climate change
Emission measurements
Emissions
Emissions (Pollution)
Environmental conditions
Eucalyptus
Flowers & plants
Gases
Human influences
Isoprene
Isoprene emissions
Mathematical models
Mixing ratio
Nature
Nitrogen compounds
Oxides
Ozone
Ozone mixing ratio
Photosynthesis
Photosynthetically active radiation
Radiation
Radiation (Physics)
Summer
Temperature
Temperature measurement
title Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20response%20measurements%20from%20eucalypts%20give%20insight%20into%20the%20impact%20of%20Australian%20isoprene%20emissions%20on%20air%20quality%20in%202050&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Emmerson,%20Kathryn%20M&rft.date=2020-05-28&rft.volume=20&rft.issue=10&rft.spage=6193&rft.epage=6206&rft.pages=6193-6206&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-20-6193-2020&rft_dat=%3Cgale_doaj_%3EA625112761%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-8a99ef1cb6f27c700c59739230b4bbc8e63b3ec27977b1c2197841bf66ed3443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414146756&rft_id=info:pmid/&rft_galeid=A625112761&rfr_iscdi=true