Loading…

Automatic Weight Redistribution Ensemble Model Based on Transfer Learning to Use in Leak Detection for the Power Industry

Creating an effective deep learning technique for accurately diagnosing leak signals across diverse environments is crucial for integrating artificial intelligence (AI) into the power plant industry. We propose an automatic weight redistribution ensemble model based on transfer learning (TL) for det...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-08, Vol.24 (15), p.4999
Main Authors: Kwon, Sungsoo, Jeon, Seoyoung, Park, Tae-Jin, Bae, Ji-Hoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c343t-912e160f515c3c8ed0b7d16191234765d7e23a6339bc3c3b01571fcc9a41cd653
container_end_page
container_issue 15
container_start_page 4999
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Kwon, Sungsoo
Jeon, Seoyoung
Park, Tae-Jin
Bae, Ji-Hoon
description Creating an effective deep learning technique for accurately diagnosing leak signals across diverse environments is crucial for integrating artificial intelligence (AI) into the power plant industry. We propose an automatic weight redistribution ensemble model based on transfer learning (TL) for detecting leaks in diverse power plant environments, overcoming the challenges of site-specific AI methods. This innovative model processes time series acoustic data collected from multiple homogeneous sensors located at different positions into three-dimensional root-mean-square (RMS) and frequency volume features, enabling accurate leak detection. Utilizing a TL-driven, two-stage learning process, we first train residual-network-based models for each domain using these preprocessed features. Subsequently, these models are retrained in an ensemble for comprehensive leak detection across domains, with control weight ratios finely adjusted through a softmax score-based approach. The experiment results demonstrate that the proposed method effectively distinguishes low-level leaks and noise compared to existing techniques, even when the data available for model training are very limited.
doi_str_mv 10.3390/s24154999
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a9ca6d038812402084f7c7de3bbbbf6c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804514922</galeid><doaj_id>oai_doaj_org_article_a9ca6d038812402084f7c7de3bbbbf6c</doaj_id><sourcerecordid>A804514922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-912e160f515c3c8ed0b7d16191234765d7e23a6339bc3c3b01571fcc9a41cd653</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIREvhwB9AlrjQQ4q_9sPHUApECgKhVhxXXnucOuzaxfaqyr9n0pQIYR9svX7m9czYVfWa0QshFH2fuWS1VEo9qU6Z5HLRcU6f_rM_qV7kvKWUCyG659WJUIxLKuvTarecS5x08Yb8BL-5LeQHWJ9L8sNcfAzkKmSYhhHI12hhJB90BktQv046ZAeJrEGn4MOGlEhuMhAf9tIv8hEKmAcLFxMpt0C-x3vkV8HO6L97WT1zeszw6nE9q24-XV1fflmsv31eXS7XCyOkKAvMFFhDXc1qI0wHlg6tZQ1DXci2qW0LXOgG-zDguRgoq1vmjFFaMmObWpxVq4OvjXrb3yU_6bTro_b9gxDTptcJ6x-h18roxlLRdfv2cNpJ15rWghhwuMag17uD112Kv2fIpZ98NjCOOkCccy8optXJhjFE3_6HbuOcAla6p6hCpm2QujhQG433--BiSdrgtDB5EwM4j_qyw7diUnGOAeeHAJNizgncsSJG-_1n6I-fAdk3jynMwwT2SP59ffEHuQWs8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090961176</pqid></control><display><type>article</type><title>Automatic Weight Redistribution Ensemble Model Based on Transfer Learning to Use in Leak Detection for the Power Industry</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kwon, Sungsoo ; Jeon, Seoyoung ; Park, Tae-Jin ; Bae, Ji-Hoon</creator><creatorcontrib>Kwon, Sungsoo ; Jeon, Seoyoung ; Park, Tae-Jin ; Bae, Ji-Hoon</creatorcontrib><description>Creating an effective deep learning technique for accurately diagnosing leak signals across diverse environments is crucial for integrating artificial intelligence (AI) into the power plant industry. We propose an automatic weight redistribution ensemble model based on transfer learning (TL) for detecting leaks in diverse power plant environments, overcoming the challenges of site-specific AI methods. This innovative model processes time series acoustic data collected from multiple homogeneous sensors located at different positions into three-dimensional root-mean-square (RMS) and frequency volume features, enabling accurate leak detection. Utilizing a TL-driven, two-stage learning process, we first train residual-network-based models for each domain using these preprocessed features. Subsequently, these models are retrained in an ensemble for comprehensive leak detection across domains, with control weight ratios finely adjusted through a softmax score-based approach. The experiment results demonstrate that the proposed method effectively distinguishes low-level leaks and noise compared to existing techniques, even when the data available for model training are very limited.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24154999</identifier><identifier>PMID: 39124045</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Acoustics ; Aging ; Artificial intelligence ; Datasets ; Deep learning ; Efficiency ; Electric power-plants ; ensemble model ; ensemble weight automatic redistribution ; Fourier transforms ; Leak detection ; Machine learning ; Neural networks ; Noise ; Power plants ; Sensors ; Signal processing ; Support vector machines ; Time series ; transfer learning ; Wavelet transforms</subject><ispartof>Sensors (Basel, Switzerland), 2024-08, Vol.24 (15), p.4999</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-912e160f515c3c8ed0b7d16191234765d7e23a6339bc3c3b01571fcc9a41cd653</cites><orcidid>0000-0001-9057-9201 ; 0009-0000-7093-3218 ; 0000-0002-0035-5261 ; 0009-0004-9623-0878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090961176/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090961176?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39124045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Sungsoo</creatorcontrib><creatorcontrib>Jeon, Seoyoung</creatorcontrib><creatorcontrib>Park, Tae-Jin</creatorcontrib><creatorcontrib>Bae, Ji-Hoon</creatorcontrib><title>Automatic Weight Redistribution Ensemble Model Based on Transfer Learning to Use in Leak Detection for the Power Industry</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Creating an effective deep learning technique for accurately diagnosing leak signals across diverse environments is crucial for integrating artificial intelligence (AI) into the power plant industry. We propose an automatic weight redistribution ensemble model based on transfer learning (TL) for detecting leaks in diverse power plant environments, overcoming the challenges of site-specific AI methods. This innovative model processes time series acoustic data collected from multiple homogeneous sensors located at different positions into three-dimensional root-mean-square (RMS) and frequency volume features, enabling accurate leak detection. Utilizing a TL-driven, two-stage learning process, we first train residual-network-based models for each domain using these preprocessed features. Subsequently, these models are retrained in an ensemble for comprehensive leak detection across domains, with control weight ratios finely adjusted through a softmax score-based approach. The experiment results demonstrate that the proposed method effectively distinguishes low-level leaks and noise compared to existing techniques, even when the data available for model training are very limited.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Aging</subject><subject>Artificial intelligence</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Electric power-plants</subject><subject>ensemble model</subject><subject>ensemble weight automatic redistribution</subject><subject>Fourier transforms</subject><subject>Leak detection</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Power plants</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Support vector machines</subject><subject>Time series</subject><subject>transfer learning</subject><subject>Wavelet transforms</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhlcIREvhwB9AlrjQQ4q_9sPHUApECgKhVhxXXnucOuzaxfaqyr9n0pQIYR9svX7m9czYVfWa0QshFH2fuWS1VEo9qU6Z5HLRcU6f_rM_qV7kvKWUCyG659WJUIxLKuvTarecS5x08Yb8BL-5LeQHWJ9L8sNcfAzkKmSYhhHI12hhJB90BktQv046ZAeJrEGn4MOGlEhuMhAf9tIv8hEKmAcLFxMpt0C-x3vkV8HO6L97WT1zeszw6nE9q24-XV1fflmsv31eXS7XCyOkKAvMFFhDXc1qI0wHlg6tZQ1DXci2qW0LXOgG-zDguRgoq1vmjFFaMmObWpxVq4OvjXrb3yU_6bTro_b9gxDTptcJ6x-h18roxlLRdfv2cNpJ15rWghhwuMag17uD112Kv2fIpZ98NjCOOkCccy8optXJhjFE3_6HbuOcAla6p6hCpm2QujhQG433--BiSdrgtDB5EwM4j_qyw7diUnGOAeeHAJNizgncsSJG-_1n6I-fAdk3jynMwwT2SP59ffEHuQWs8w</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>Kwon, Sungsoo</creator><creator>Jeon, Seoyoung</creator><creator>Park, Tae-Jin</creator><creator>Bae, Ji-Hoon</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9057-9201</orcidid><orcidid>https://orcid.org/0009-0000-7093-3218</orcidid><orcidid>https://orcid.org/0000-0002-0035-5261</orcidid><orcidid>https://orcid.org/0009-0004-9623-0878</orcidid></search><sort><creationdate>20240802</creationdate><title>Automatic Weight Redistribution Ensemble Model Based on Transfer Learning to Use in Leak Detection for the Power Industry</title><author>Kwon, Sungsoo ; Jeon, Seoyoung ; Park, Tae-Jin ; Bae, Ji-Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-912e160f515c3c8ed0b7d16191234765d7e23a6339bc3c3b01571fcc9a41cd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Aging</topic><topic>Artificial intelligence</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Electric power-plants</topic><topic>ensemble model</topic><topic>ensemble weight automatic redistribution</topic><topic>Fourier transforms</topic><topic>Leak detection</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Power plants</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Support vector machines</topic><topic>Time series</topic><topic>transfer learning</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Sungsoo</creatorcontrib><creatorcontrib>Jeon, Seoyoung</creatorcontrib><creatorcontrib>Park, Tae-Jin</creatorcontrib><creatorcontrib>Bae, Ji-Hoon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Sungsoo</au><au>Jeon, Seoyoung</au><au>Park, Tae-Jin</au><au>Bae, Ji-Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Weight Redistribution Ensemble Model Based on Transfer Learning to Use in Leak Detection for the Power Industry</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-08-02</date><risdate>2024</risdate><volume>24</volume><issue>15</issue><spage>4999</spage><pages>4999-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Creating an effective deep learning technique for accurately diagnosing leak signals across diverse environments is crucial for integrating artificial intelligence (AI) into the power plant industry. We propose an automatic weight redistribution ensemble model based on transfer learning (TL) for detecting leaks in diverse power plant environments, overcoming the challenges of site-specific AI methods. This innovative model processes time series acoustic data collected from multiple homogeneous sensors located at different positions into three-dimensional root-mean-square (RMS) and frequency volume features, enabling accurate leak detection. Utilizing a TL-driven, two-stage learning process, we first train residual-network-based models for each domain using these preprocessed features. Subsequently, these models are retrained in an ensemble for comprehensive leak detection across domains, with control weight ratios finely adjusted through a softmax score-based approach. The experiment results demonstrate that the proposed method effectively distinguishes low-level leaks and noise compared to existing techniques, even when the data available for model training are very limited.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39124045</pmid><doi>10.3390/s24154999</doi><orcidid>https://orcid.org/0000-0001-9057-9201</orcidid><orcidid>https://orcid.org/0009-0000-7093-3218</orcidid><orcidid>https://orcid.org/0000-0002-0035-5261</orcidid><orcidid>https://orcid.org/0009-0004-9623-0878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-08, Vol.24 (15), p.4999
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a9ca6d038812402084f7c7de3bbbbf6c
source Publicly Available Content Database; PubMed Central
subjects Accuracy
Acoustics
Aging
Artificial intelligence
Datasets
Deep learning
Efficiency
Electric power-plants
ensemble model
ensemble weight automatic redistribution
Fourier transforms
Leak detection
Machine learning
Neural networks
Noise
Power plants
Sensors
Signal processing
Support vector machines
Time series
transfer learning
Wavelet transforms
title Automatic Weight Redistribution Ensemble Model Based on Transfer Learning to Use in Leak Detection for the Power Industry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Weight%20Redistribution%20Ensemble%20Model%20Based%20on%20Transfer%20Learning%20to%20Use%20in%20Leak%20Detection%20for%20the%20Power%20Industry&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Kwon,%20Sungsoo&rft.date=2024-08-02&rft.volume=24&rft.issue=15&rft.spage=4999&rft.pages=4999-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24154999&rft_dat=%3Cgale_doaj_%3EA804514922%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-912e160f515c3c8ed0b7d16191234765d7e23a6339bc3c3b01571fcc9a41cd653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090961176&rft_id=info:pmid/39124045&rft_galeid=A804514922&rfr_iscdi=true