Loading…
Graphene oxide based coconut shell waste: synthesis by modified Hummers method and characterization
Graphene oxide (GO) based on coconut shell waste was successfully synthesized using a modified Hummers method, and the obtained GO was confirmed using XRD, FTIR, Raman spectroscopy, UV-Vis spectroscopy, and SEM-EDX. The XRD spectroscopy obtained the fractional content of the 2H graphite phase of 71....
Saved in:
Published in: | Heliyon 2020-08, Vol.6 (8), p.e04568-e04568, Article e04568 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene oxide (GO) based on coconut shell waste was successfully synthesized using a modified Hummers method, and the obtained GO was confirmed using XRD, FTIR, Raman spectroscopy, UV-Vis spectroscopy, and SEM-EDX. The XRD spectroscopy obtained the fractional content of the 2H graphite phase of 71.53%, 14.47% phosphorus, 10.02% calcium, and 3.97% potassium in coconut shell charcoal, where the GO sample tend to forms a phase of reduced graphene oxide (rGO). FTIR spectra shows compound functional groups of hydroxyl (- OH) at peak 1 (3449.92 cm−1), carboxyl (-COOH) at peak 2 (1719.42 cm−1) and peak 3 (1702.62 cm−1), and alcohol (C–OH) at peak 4 (1628.12 cm−1) and epoxy (CO) at peak 5 (1158.51 cm−1), which is similar to the GO synthesis from pure graphite. Raman spectroscopy analysis shows that the value of the ID/IG intensity ratio of the GO sample was 0.89 with a 2D single layer, and SEM results showed that surface morphology with an abundance of granular particles were found with different size distribution. The UV-visible results showed sufficient optical properties characterized by the spectrum, which formed because of the light absorption of the energy passed on the sample. The bandgap energy value of the sample obtained by the Tauc plot method was 4.38 eV, which indicates semiconductor properties.
Materials science; Materials chemistry; Organic chemistry; Nanotechnology; Coconut shell waste; Graphene oxide; Band gap energy. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2020.e04568 |