Loading…

Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass

Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an en...

Full description

Saved in:
Bibliographic Details
Published in:Microbial cell factories 2024-11, Vol.23 (1), p.323-13, Article 323
Main Authors: de Figueiredo, Fernanda Lopes, Contesini, Fabiano Jares, Terrasan, César Rafael Fanchini, Gerhardt, Jaqueline Aline, Corrêa, Ana Beatriz, Antoniel, Everton Paschoal, Wassano, Natália Sayuri, Levassor, Lucas, Rabelo, Sarita Cândida, Franco, Telma Teixeira, Mortensen, Uffe Hasbro, Damasio, André
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c395t-7e194bd7d353b630a3ec5bc48bd14859a1af602ada7a47f6e55e4807a4f061323
container_end_page 13
container_issue 1
container_start_page 323
container_title Microbial cell factories
container_volume 23
creator de Figueiredo, Fernanda Lopes
Contesini, Fabiano Jares
Terrasan, César Rafael Fanchini
Gerhardt, Jaqueline Aline
Corrêa, Ana Beatriz
Antoniel, Everton Paschoal
Wassano, Natália Sayuri
Levassor, Lucas
Rabelo, Sarita Cândida
Franco, Telma Teixeira
Mortensen, Uffe Hasbro
Damasio, André
description Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides. The A. niger prtT∆ strain created resulted in a reduced extracellular protease production. The prtT∆ background was then used to create strains by deleting exoenzyme encoding genes involved in mono- or disaccharide formation. Consequently, we successfully generated a tailored prtT∆bglA∆ strain by eliminating a beta-glucosidase (bglA) gene and subsequently deleted two cellobiohydrolases and one beta-xylosidase encoding genes using a multiplex strategy, resulting in the Quintuple∆ strain (prtT∆; bglA∆; cbhA∆; cbhB∆; xlnD∆). When applied for sugarcane biomass degradation, the tailored secretomes produced by A. niger resulted in a higher ratio of cellobiose and cellotriose compared with glucose relative to the reference strain. Mass spectrometry revealed that the Quintuple∆ strain secreted alternative cellobiohydrolases and beta-glucosidases to compensate for the absence of major cellulases. Enzymes targeting minor polysaccharides in plant biomass were also upregulated in this tailored strain. Tailored secretome use increased COS/glucose ratio during sugarcane biomass degradation showing that deleting some enzymatic components is an effective approach for producing customized enzymatic cocktails. Our findings highlight the plasticity of fungal genomes as enzymes that target minor components of plant cell walls, and alternative cellulases were produced by the mutant strain. Despite deletion of important secretome components, fungal growth was maintained in plant biomass.
doi_str_mv 10.1186/s12934-024-02578-9
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a9d4176d3b774fdb86664d6b0ea92e54</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818314940</galeid><doaj_id>oai_doaj_org_article_a9d4176d3b774fdb86664d6b0ea92e54</doaj_id><sourcerecordid>A818314940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-7e194bd7d353b630a3ec5bc48bd14859a1af602ada7a47f6e55e4807a4f061323</originalsourceid><addsrcrecordid>eNptkk-L1TAUxYsozjj6BVxIwI0uOiZNmjTLxzDqgwHBP-twm9x0MrTNM2lBv71503HwgYSQ5OZ3Dhw4VfWa0UvGOvkhs0ZzUdPmuFvV1fpJdc6Eauuma_XTf-5n1Yuc7yhlqlP8eXXGtWSi0fK88tfzEGbEFOaBLLdIMtqES5yQRE92-YBpCOO4ZjKHARPxMRGL4xjjGIaYwdpbSMFhJocU3WqXEGfiU5zIYYR5IX2IE-T8snrmYcz46uG8qH58vP5-9bm--fJpf7W7qS3X7VIrZFr0Tjne8l5yChxt21vR9Y6JkgMYeEkbcKBAKC-xbVF0tDw8lYw3_KLab74uwp05pDBB-m0iBHM_iGkwkJZgRzSgnWBKOt4rJbzrOymlcLKnCLrBVhSvd5tXSfZzxbyYKeRjdpgxrtlwxgXnjWZdQd9u6ADFOcw-LgnsETe7rvwzoQUt1OV_qLIcTsHGGX0o8xPB-xNBYRb8tQyw5mz2376ess3G2hRzTugf0zNqjnUxW11MqYu5r4vRRfTmIeLaT-geJX_7wf8A_yK56A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134332918</pqid></control><display><type>article</type><title>Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>de Figueiredo, Fernanda Lopes ; Contesini, Fabiano Jares ; Terrasan, César Rafael Fanchini ; Gerhardt, Jaqueline Aline ; Corrêa, Ana Beatriz ; Antoniel, Everton Paschoal ; Wassano, Natália Sayuri ; Levassor, Lucas ; Rabelo, Sarita Cândida ; Franco, Telma Teixeira ; Mortensen, Uffe Hasbro ; Damasio, André</creator><creatorcontrib>de Figueiredo, Fernanda Lopes ; Contesini, Fabiano Jares ; Terrasan, César Rafael Fanchini ; Gerhardt, Jaqueline Aline ; Corrêa, Ana Beatriz ; Antoniel, Everton Paschoal ; Wassano, Natália Sayuri ; Levassor, Lucas ; Rabelo, Sarita Cândida ; Franco, Telma Teixeira ; Mortensen, Uffe Hasbro ; Damasio, André</creatorcontrib><description>Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides. The A. niger prtT∆ strain created resulted in a reduced extracellular protease production. The prtT∆ background was then used to create strains by deleting exoenzyme encoding genes involved in mono- or disaccharide formation. Consequently, we successfully generated a tailored prtT∆bglA∆ strain by eliminating a beta-glucosidase (bglA) gene and subsequently deleted two cellobiohydrolases and one beta-xylosidase encoding genes using a multiplex strategy, resulting in the Quintuple∆ strain (prtT∆; bglA∆; cbhA∆; cbhB∆; xlnD∆). When applied for sugarcane biomass degradation, the tailored secretomes produced by A. niger resulted in a higher ratio of cellobiose and cellotriose compared with glucose relative to the reference strain. Mass spectrometry revealed that the Quintuple∆ strain secreted alternative cellobiohydrolases and beta-glucosidases to compensate for the absence of major cellulases. Enzymes targeting minor polysaccharides in plant biomass were also upregulated in this tailored strain. Tailored secretome use increased COS/glucose ratio during sugarcane biomass degradation showing that deleting some enzymatic components is an effective approach for producing customized enzymatic cocktails. Our findings highlight the plasticity of fungal genomes as enzymes that target minor components of plant cell walls, and alternative cellulases were produced by the mutant strain. Despite deletion of important secretome components, fungal growth was maintained in plant biomass.</description><identifier>ISSN: 1475-2859</identifier><identifier>EISSN: 1475-2859</identifier><identifier>DOI: 10.1186/s12934-024-02578-9</identifier><identifier>PMID: 39614296</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Aspergillus ; Aspergillus niger ; Aspergillus niger - genetics ; Aspergillus niger - metabolism ; beta-Glucosidase - genetics ; beta-Glucosidase - metabolism ; Biomass ; Biomass energy ; CAZymes ; Cellooligosaccharides ; Chemical properties ; Dextrose ; Ethylenediaminetetraacetic acid ; Fermentation ; Fungal engineering ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Genetic aspects ; Genomics ; Glucose ; Metabolic Engineering - methods ; Methods ; Microbial genetic engineering ; Microbial polysaccharides ; Microbiological research ; Microbiological synthesis ; Oligosaccharides - metabolism ; Physiological aspects ; Polysaccharides ; Production processes ; Proteases ; Saccharum - metabolism ; Sugarcane ; Sugarcane biomass ; Tailor-made enzymatic cocktail</subject><ispartof>Microbial cell factories, 2024-11, Vol.23 (1), p.323-13, Article 323</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c395t-7e194bd7d353b630a3ec5bc48bd14859a1af602ada7a47f6e55e4807a4f061323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,37013</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39614296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Figueiredo, Fernanda Lopes</creatorcontrib><creatorcontrib>Contesini, Fabiano Jares</creatorcontrib><creatorcontrib>Terrasan, César Rafael Fanchini</creatorcontrib><creatorcontrib>Gerhardt, Jaqueline Aline</creatorcontrib><creatorcontrib>Corrêa, Ana Beatriz</creatorcontrib><creatorcontrib>Antoniel, Everton Paschoal</creatorcontrib><creatorcontrib>Wassano, Natália Sayuri</creatorcontrib><creatorcontrib>Levassor, Lucas</creatorcontrib><creatorcontrib>Rabelo, Sarita Cândida</creatorcontrib><creatorcontrib>Franco, Telma Teixeira</creatorcontrib><creatorcontrib>Mortensen, Uffe Hasbro</creatorcontrib><creatorcontrib>Damasio, André</creatorcontrib><title>Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass</title><title>Microbial cell factories</title><addtitle>Microb Cell Fact</addtitle><description>Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides. The A. niger prtT∆ strain created resulted in a reduced extracellular protease production. The prtT∆ background was then used to create strains by deleting exoenzyme encoding genes involved in mono- or disaccharide formation. Consequently, we successfully generated a tailored prtT∆bglA∆ strain by eliminating a beta-glucosidase (bglA) gene and subsequently deleted two cellobiohydrolases and one beta-xylosidase encoding genes using a multiplex strategy, resulting in the Quintuple∆ strain (prtT∆; bglA∆; cbhA∆; cbhB∆; xlnD∆). When applied for sugarcane biomass degradation, the tailored secretomes produced by A. niger resulted in a higher ratio of cellobiose and cellotriose compared with glucose relative to the reference strain. Mass spectrometry revealed that the Quintuple∆ strain secreted alternative cellobiohydrolases and beta-glucosidases to compensate for the absence of major cellulases. Enzymes targeting minor polysaccharides in plant biomass were also upregulated in this tailored strain. Tailored secretome use increased COS/glucose ratio during sugarcane biomass degradation showing that deleting some enzymatic components is an effective approach for producing customized enzymatic cocktails. Our findings highlight the plasticity of fungal genomes as enzymes that target minor components of plant cell walls, and alternative cellulases were produced by the mutant strain. Despite deletion of important secretome components, fungal growth was maintained in plant biomass.</description><subject>Aspergillus</subject><subject>Aspergillus niger</subject><subject>Aspergillus niger - genetics</subject><subject>Aspergillus niger - metabolism</subject><subject>beta-Glucosidase - genetics</subject><subject>beta-Glucosidase - metabolism</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>CAZymes</subject><subject>Cellooligosaccharides</subject><subject>Chemical properties</subject><subject>Dextrose</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Fermentation</subject><subject>Fungal engineering</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Glucose</subject><subject>Metabolic Engineering - methods</subject><subject>Methods</subject><subject>Microbial genetic engineering</subject><subject>Microbial polysaccharides</subject><subject>Microbiological research</subject><subject>Microbiological synthesis</subject><subject>Oligosaccharides - metabolism</subject><subject>Physiological aspects</subject><subject>Polysaccharides</subject><subject>Production processes</subject><subject>Proteases</subject><subject>Saccharum - metabolism</subject><subject>Sugarcane</subject><subject>Sugarcane biomass</subject><subject>Tailor-made enzymatic cocktail</subject><issn>1475-2859</issn><issn>1475-2859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkk-L1TAUxYsozjj6BVxIwI0uOiZNmjTLxzDqgwHBP-twm9x0MrTNM2lBv71503HwgYSQ5OZ3Dhw4VfWa0UvGOvkhs0ZzUdPmuFvV1fpJdc6Eauuma_XTf-5n1Yuc7yhlqlP8eXXGtWSi0fK88tfzEGbEFOaBLLdIMtqES5yQRE92-YBpCOO4ZjKHARPxMRGL4xjjGIaYwdpbSMFhJocU3WqXEGfiU5zIYYR5IX2IE-T8snrmYcz46uG8qH58vP5-9bm--fJpf7W7qS3X7VIrZFr0Tjne8l5yChxt21vR9Y6JkgMYeEkbcKBAKC-xbVF0tDw8lYw3_KLab74uwp05pDBB-m0iBHM_iGkwkJZgRzSgnWBKOt4rJbzrOymlcLKnCLrBVhSvd5tXSfZzxbyYKeRjdpgxrtlwxgXnjWZdQd9u6ADFOcw-LgnsETe7rvwzoQUt1OV_qLIcTsHGGX0o8xPB-xNBYRb8tQyw5mz2376ess3G2hRzTugf0zNqjnUxW11MqYu5r4vRRfTmIeLaT-geJX_7wf8A_yK56A</recordid><startdate>20241129</startdate><enddate>20241129</enddate><creator>de Figueiredo, Fernanda Lopes</creator><creator>Contesini, Fabiano Jares</creator><creator>Terrasan, César Rafael Fanchini</creator><creator>Gerhardt, Jaqueline Aline</creator><creator>Corrêa, Ana Beatriz</creator><creator>Antoniel, Everton Paschoal</creator><creator>Wassano, Natália Sayuri</creator><creator>Levassor, Lucas</creator><creator>Rabelo, Sarita Cândida</creator><creator>Franco, Telma Teixeira</creator><creator>Mortensen, Uffe Hasbro</creator><creator>Damasio, André</creator><general>BioMed Central Ltd</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20241129</creationdate><title>Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass</title><author>de Figueiredo, Fernanda Lopes ; Contesini, Fabiano Jares ; Terrasan, César Rafael Fanchini ; Gerhardt, Jaqueline Aline ; Corrêa, Ana Beatriz ; Antoniel, Everton Paschoal ; Wassano, Natália Sayuri ; Levassor, Lucas ; Rabelo, Sarita Cândida ; Franco, Telma Teixeira ; Mortensen, Uffe Hasbro ; Damasio, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-7e194bd7d353b630a3ec5bc48bd14859a1af602ada7a47f6e55e4807a4f061323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aspergillus</topic><topic>Aspergillus niger</topic><topic>Aspergillus niger - genetics</topic><topic>Aspergillus niger - metabolism</topic><topic>beta-Glucosidase - genetics</topic><topic>beta-Glucosidase - metabolism</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>CAZymes</topic><topic>Cellooligosaccharides</topic><topic>Chemical properties</topic><topic>Dextrose</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Fermentation</topic><topic>Fungal engineering</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Glucose</topic><topic>Metabolic Engineering - methods</topic><topic>Methods</topic><topic>Microbial genetic engineering</topic><topic>Microbial polysaccharides</topic><topic>Microbiological research</topic><topic>Microbiological synthesis</topic><topic>Oligosaccharides - metabolism</topic><topic>Physiological aspects</topic><topic>Polysaccharides</topic><topic>Production processes</topic><topic>Proteases</topic><topic>Saccharum - metabolism</topic><topic>Sugarcane</topic><topic>Sugarcane biomass</topic><topic>Tailor-made enzymatic cocktail</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Figueiredo, Fernanda Lopes</creatorcontrib><creatorcontrib>Contesini, Fabiano Jares</creatorcontrib><creatorcontrib>Terrasan, César Rafael Fanchini</creatorcontrib><creatorcontrib>Gerhardt, Jaqueline Aline</creatorcontrib><creatorcontrib>Corrêa, Ana Beatriz</creatorcontrib><creatorcontrib>Antoniel, Everton Paschoal</creatorcontrib><creatorcontrib>Wassano, Natália Sayuri</creatorcontrib><creatorcontrib>Levassor, Lucas</creatorcontrib><creatorcontrib>Rabelo, Sarita Cândida</creatorcontrib><creatorcontrib>Franco, Telma Teixeira</creatorcontrib><creatorcontrib>Mortensen, Uffe Hasbro</creatorcontrib><creatorcontrib>Damasio, André</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Microbial cell factories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Figueiredo, Fernanda Lopes</au><au>Contesini, Fabiano Jares</au><au>Terrasan, César Rafael Fanchini</au><au>Gerhardt, Jaqueline Aline</au><au>Corrêa, Ana Beatriz</au><au>Antoniel, Everton Paschoal</au><au>Wassano, Natália Sayuri</au><au>Levassor, Lucas</au><au>Rabelo, Sarita Cândida</au><au>Franco, Telma Teixeira</au><au>Mortensen, Uffe Hasbro</au><au>Damasio, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass</atitle><jtitle>Microbial cell factories</jtitle><addtitle>Microb Cell Fact</addtitle><date>2024-11-29</date><risdate>2024</risdate><volume>23</volume><issue>1</issue><spage>323</spage><epage>13</epage><pages>323-13</pages><artnum>323</artnum><issn>1475-2859</issn><eissn>1475-2859</eissn><abstract>Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides. The A. niger prtT∆ strain created resulted in a reduced extracellular protease production. The prtT∆ background was then used to create strains by deleting exoenzyme encoding genes involved in mono- or disaccharide formation. Consequently, we successfully generated a tailored prtT∆bglA∆ strain by eliminating a beta-glucosidase (bglA) gene and subsequently deleted two cellobiohydrolases and one beta-xylosidase encoding genes using a multiplex strategy, resulting in the Quintuple∆ strain (prtT∆; bglA∆; cbhA∆; cbhB∆; xlnD∆). When applied for sugarcane biomass degradation, the tailored secretomes produced by A. niger resulted in a higher ratio of cellobiose and cellotriose compared with glucose relative to the reference strain. Mass spectrometry revealed that the Quintuple∆ strain secreted alternative cellobiohydrolases and beta-glucosidases to compensate for the absence of major cellulases. Enzymes targeting minor polysaccharides in plant biomass were also upregulated in this tailored strain. Tailored secretome use increased COS/glucose ratio during sugarcane biomass degradation showing that deleting some enzymatic components is an effective approach for producing customized enzymatic cocktails. Our findings highlight the plasticity of fungal genomes as enzymes that target minor components of plant cell walls, and alternative cellulases were produced by the mutant strain. Despite deletion of important secretome components, fungal growth was maintained in plant biomass.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39614296</pmid><doi>10.1186/s12934-024-02578-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-2859
ispartof Microbial cell factories, 2024-11, Vol.23 (1), p.323-13, Article 323
issn 1475-2859
1475-2859
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a9d4176d3b774fdb86664d6b0ea92e54
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Aspergillus
Aspergillus niger
Aspergillus niger - genetics
Aspergillus niger - metabolism
beta-Glucosidase - genetics
beta-Glucosidase - metabolism
Biomass
Biomass energy
CAZymes
Cellooligosaccharides
Chemical properties
Dextrose
Ethylenediaminetetraacetic acid
Fermentation
Fungal engineering
Fungal Proteins - genetics
Fungal Proteins - metabolism
Genetic aspects
Genomics
Glucose
Metabolic Engineering - methods
Methods
Microbial genetic engineering
Microbial polysaccharides
Microbiological research
Microbiological synthesis
Oligosaccharides - metabolism
Physiological aspects
Polysaccharides
Production processes
Proteases
Saccharum - metabolism
Sugarcane
Sugarcane biomass
Tailor-made enzymatic cocktail
title Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20secretome%20of%20Aspergillus%20niger%20for%20cellooligosaccharides%20production%20from%20plant%20biomass&rft.jtitle=Microbial%20cell%20factories&rft.au=de%20Figueiredo,%20Fernanda%20Lopes&rft.date=2024-11-29&rft.volume=23&rft.issue=1&rft.spage=323&rft.epage=13&rft.pages=323-13&rft.artnum=323&rft.issn=1475-2859&rft.eissn=1475-2859&rft_id=info:doi/10.1186/s12934-024-02578-9&rft_dat=%3Cgale_doaj_%3EA818314940%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-7e194bd7d353b630a3ec5bc48bd14859a1af602ada7a47f6e55e4807a4f061323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3134332918&rft_id=info:pmid/39614296&rft_galeid=A818314940&rfr_iscdi=true