Loading…

Conjugated Oligo-Aromatic Compounds Bearing a 3,4,5-Trimethoxy Moiety: Investigation of Their Antioxidant Activity Correlated with a DFT Study

A series of heterocyclic compounds bearing the well-known free radical scavenging 3,4,5-trimethoxybenzyloxy group, was synthesized. The key compound 4-(3,4,5-trimethoxybenzyl-oxy)benzohydrazide was converted into thiosemicarbazide derivatives, which were subsequently cyclized with NaOH to provide 1,...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2016-02, Vol.21 (2), p.224
Main Authors: Kareem, Huda S, Nordin, Nurdiana, Heidelberg, Thorsten, Abdul-Aziz, Azlina, Ariffin, Azhar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A series of heterocyclic compounds bearing the well-known free radical scavenging 3,4,5-trimethoxybenzyloxy group, was synthesized. The key compound 4-(3,4,5-trimethoxybenzyl-oxy)benzohydrazide was converted into thiosemicarbazide derivatives, which were subsequently cyclized with NaOH to provide 1,2,4-triazole derivatives. Alternative treatment of the acid hydrazide with carbon disulfide in the presence of KOH led to the corresponding 1,3,4-oxadiazole and various alkylated derivatives. The newly synthesized compounds were purified and the structures of the products were elucidated and confirmed on the basis of their analytical and spectral data. Their antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) and Ferric Reducing Antioxidant Power (FRAP) assays. The thiosemicarbazide derivatives were highly active in both antioxidant assays with the lowest IC50 value for DPPH radical scavenging. Theoretical calculations based on density functional theory (DFT) were performed to understand the relative importance of NH, SH and CH hydrogens on the radical scavenging activities of these compounds.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules21020224