Loading…
Contrastive voxel clustering for multiscale modeling of brain network
Resting-state functional magnetic resonance imaging (fMRI) provides an efficient way to analyze the functional connectivity between brain regions. A comprehensive understanding of brain functionality requires a unified description of multi-scale layers of neural structure. However, existing brain ne...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2024-08, Vol.297, p.120755, Article 120755 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-45c71d6fdcc657d7cb447e08f27445a66c1e8fa24fa5b20ac69cb435b9e59143 |
container_end_page | |
container_issue | |
container_start_page | 120755 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 297 |
creator | Ding, Zhiyuan Huang, Yulang Zeng, Xiangzhu Jiang, Shiyin Feng, Shuyang Wang, Zhenduo Wang, Ling Wang, Zeng Xu, Yingying Liu, Yan |
description | Resting-state functional magnetic resonance imaging (fMRI) provides an efficient way to analyze the functional connectivity between brain regions. A comprehensive understanding of brain functionality requires a unified description of multi-scale layers of neural structure. However, existing brain network modeling methods often simplify this property by averaging Blood oxygen level dependent (BOLD) signals at the brain region level for fMRI-based analysis with the assumption that BOLD signals are homogeneous within each brain region, which ignores the heterogeneity of voxels within each Region of Interest (ROI). This study introduces a novel multi-stage self-supervised learning framework for multiscale brain network analysis, which effectively delineates brain functionality from voxel to ROIs and up to sample level. A Contrastive Voxel Clustering (CVC) module is proposed to simultaneously learn the voxel-level features and clustering assignments, which ensures the retention of informative clustering features at the finest voxel-level and concurrently preserves functional connectivity characteristics. Additionally, based on the extracted features and clustering assignments at the voxel level by CVC, a Brain ROI-based Graph Neural Network (BR-GNN) is built to extract functional connectivity features at the brain ROI-level and used for sample-level prediction, which integrates the functional clustering maps with the pre-established structural ROI maps and creates a more comprehensive and effective analytical tool. Experiments are performed on two datasets, which illustrate the effectiveness and generalization ability of the proposed method by analyzing voxel-level clustering results and brain ROIs-level functional characteristics. The proposed method provides a multiscale modeling framework for brain functional connectivity analysis, which will be further used for other brain disease identification. Code is available at https://github.com/yanliugroup/fmri-cvc.
•The proposed method unravels the complexity of brain networks from voxels to regions and across samples.•The voxel-level BOLD signals are used to extract voxel-level clustering features and retain functional connectivity characteristics.•The multiscale modeling offers new insights into neurological diseases like Alzheimer’s. |
doi_str_mv | 10.1016/j.neuroimage.2024.120755 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a9f9d86f0abb4bbb87575760aeb4ca7b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811924002520</els_id><doaj_id>oai_doaj_org_article_a9f9d86f0abb4bbb87575760aeb4ca7b</doaj_id><sourcerecordid>3086061554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-45c71d6fdcc657d7cb447e08f27445a66c1e8fa24fa5b20ac69cb435b9e59143</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1ERduFr4AiceGSxU78Jz7Cqi2VKvXSu2U745WDExc7WeDb45DSSlyQD7ZGv5k3zw-hiuA9wYR_GvYTLCn6UR9h3-CG7kmDBWOv0AXBktWSieb1-mZt3REiz9FlzgPGWBLavUHnrcSCCk4u0NUhTnPSefYnqE7xJ4TKhiXPkPx0rFxM1biE2WerA1Rj7CGs9egqk7SfqgnmHzF9e4vOnA4Z3j3dO_RwffVw-Frf3d_cHj7f1baV7VxTZgXpueut5Uz0whpKBeDONYJSpjm3BDqnG-o0Mw3WlsuCtMxIYGXzdodut7F91IN6TMV_-qWi9upPIaaj0mn2NoDS0sm-4w5rY6gxphOsHI41GGq1MGXWx23WY4rfF8izGotLCEFPEJesWtxxzAljq-yHf9AhLmkqRgslcSdJU-ztULdRNsWcE7jnBQlWa2pqUC-pqTU1taVWWt8_CSxmhP658W9MBfiyAVA-9-QhqWw9TBZ6n8DOxb7_v8pvKQSt9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090891239</pqid></control><display><type>article</type><title>Contrastive voxel clustering for multiscale modeling of brain network</title><source>ScienceDirect Freedom Collection</source><creator>Ding, Zhiyuan ; Huang, Yulang ; Zeng, Xiangzhu ; Jiang, Shiyin ; Feng, Shuyang ; Wang, Zhenduo ; Wang, Ling ; Wang, Zeng ; Xu, Yingying ; Liu, Yan</creator><creatorcontrib>Ding, Zhiyuan ; Huang, Yulang ; Zeng, Xiangzhu ; Jiang, Shiyin ; Feng, Shuyang ; Wang, Zhenduo ; Wang, Ling ; Wang, Zeng ; Xu, Yingying ; Liu, Yan ; Alzheimer’s Disease Neuroimaging Initiative (ADNI) ; Alzheimer’s Disease Neuroimaging Initiative (ADNI)</creatorcontrib><description>Resting-state functional magnetic resonance imaging (fMRI) provides an efficient way to analyze the functional connectivity between brain regions. A comprehensive understanding of brain functionality requires a unified description of multi-scale layers of neural structure. However, existing brain network modeling methods often simplify this property by averaging Blood oxygen level dependent (BOLD) signals at the brain region level for fMRI-based analysis with the assumption that BOLD signals are homogeneous within each brain region, which ignores the heterogeneity of voxels within each Region of Interest (ROI). This study introduces a novel multi-stage self-supervised learning framework for multiscale brain network analysis, which effectively delineates brain functionality from voxel to ROIs and up to sample level. A Contrastive Voxel Clustering (CVC) module is proposed to simultaneously learn the voxel-level features and clustering assignments, which ensures the retention of informative clustering features at the finest voxel-level and concurrently preserves functional connectivity characteristics. Additionally, based on the extracted features and clustering assignments at the voxel level by CVC, a Brain ROI-based Graph Neural Network (BR-GNN) is built to extract functional connectivity features at the brain ROI-level and used for sample-level prediction, which integrates the functional clustering maps with the pre-established structural ROI maps and creates a more comprehensive and effective analytical tool. Experiments are performed on two datasets, which illustrate the effectiveness and generalization ability of the proposed method by analyzing voxel-level clustering results and brain ROIs-level functional characteristics. The proposed method provides a multiscale modeling framework for brain functional connectivity analysis, which will be further used for other brain disease identification. Code is available at https://github.com/yanliugroup/fmri-cvc.
•The proposed method unravels the complexity of brain networks from voxels to regions and across samples.•The voxel-level BOLD signals are used to extract voxel-level clustering features and retain functional connectivity characteristics.•The multiscale modeling offers new insights into neurological diseases like Alzheimer’s.</description><identifier>ISSN: 1053-8119</identifier><identifier>ISSN: 1095-9572</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2024.120755</identifier><identifier>PMID: 39074761</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Blood levels ; Brain ; Brain - diagnostic imaging ; Brain - physiology ; Brain mapping ; Brain Mapping - methods ; Cluster Analysis ; Connectome - methods ; Contrastive clustering ; Functional connectivity ; Functional magnetic resonance imaging ; Functional MRI (fMRI) ; Graph neural network (GNN) ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Models, Neurological ; Nerve Net - diagnostic imaging ; Nerve Net - physiology ; Neural networks ; Neural Networks, Computer ; Neuroimaging ; Reactive oxygen species ; Structure-function relationships</subject><ispartof>NeuroImage (Orlando, Fla.), 2024-08, Vol.297, p.120755, Article 120755</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2024. The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c393t-45c71d6fdcc657d7cb447e08f27445a66c1e8fa24fa5b20ac69cb435b9e59143</cites><orcidid>0000-0003-0110-9297 ; 0009-0003-7645-4834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39074761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Zhiyuan</creatorcontrib><creatorcontrib>Huang, Yulang</creatorcontrib><creatorcontrib>Zeng, Xiangzhu</creatorcontrib><creatorcontrib>Jiang, Shiyin</creatorcontrib><creatorcontrib>Feng, Shuyang</creatorcontrib><creatorcontrib>Wang, Zhenduo</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Wang, Zeng</creatorcontrib><creatorcontrib>Xu, Yingying</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative (ADNI)</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative (ADNI)</creatorcontrib><title>Contrastive voxel clustering for multiscale modeling of brain network</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Resting-state functional magnetic resonance imaging (fMRI) provides an efficient way to analyze the functional connectivity between brain regions. A comprehensive understanding of brain functionality requires a unified description of multi-scale layers of neural structure. However, existing brain network modeling methods often simplify this property by averaging Blood oxygen level dependent (BOLD) signals at the brain region level for fMRI-based analysis with the assumption that BOLD signals are homogeneous within each brain region, which ignores the heterogeneity of voxels within each Region of Interest (ROI). This study introduces a novel multi-stage self-supervised learning framework for multiscale brain network analysis, which effectively delineates brain functionality from voxel to ROIs and up to sample level. A Contrastive Voxel Clustering (CVC) module is proposed to simultaneously learn the voxel-level features and clustering assignments, which ensures the retention of informative clustering features at the finest voxel-level and concurrently preserves functional connectivity characteristics. Additionally, based on the extracted features and clustering assignments at the voxel level by CVC, a Brain ROI-based Graph Neural Network (BR-GNN) is built to extract functional connectivity features at the brain ROI-level and used for sample-level prediction, which integrates the functional clustering maps with the pre-established structural ROI maps and creates a more comprehensive and effective analytical tool. Experiments are performed on two datasets, which illustrate the effectiveness and generalization ability of the proposed method by analyzing voxel-level clustering results and brain ROIs-level functional characteristics. The proposed method provides a multiscale modeling framework for brain functional connectivity analysis, which will be further used for other brain disease identification. Code is available at https://github.com/yanliugroup/fmri-cvc.
•The proposed method unravels the complexity of brain networks from voxels to regions and across samples.•The voxel-level BOLD signals are used to extract voxel-level clustering features and retain functional connectivity characteristics.•The multiscale modeling offers new insights into neurological diseases like Alzheimer’s.</description><subject>Blood levels</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Cluster Analysis</subject><subject>Connectome - methods</subject><subject>Contrastive clustering</subject><subject>Functional connectivity</subject><subject>Functional magnetic resonance imaging</subject><subject>Functional MRI (fMRI)</subject><subject>Graph neural network (GNN)</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Neurological</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuroimaging</subject><subject>Reactive oxygen species</subject><subject>Structure-function relationships</subject><issn>1053-8119</issn><issn>1095-9572</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU9v1DAQxS1ERduFr4AiceGSxU78Jz7Cqi2VKvXSu2U745WDExc7WeDb45DSSlyQD7ZGv5k3zw-hiuA9wYR_GvYTLCn6UR9h3-CG7kmDBWOv0AXBktWSieb1-mZt3REiz9FlzgPGWBLavUHnrcSCCk4u0NUhTnPSefYnqE7xJ4TKhiXPkPx0rFxM1biE2WerA1Rj7CGs9egqk7SfqgnmHzF9e4vOnA4Z3j3dO_RwffVw-Frf3d_cHj7f1baV7VxTZgXpueut5Uz0whpKBeDONYJSpjm3BDqnG-o0Mw3WlsuCtMxIYGXzdodut7F91IN6TMV_-qWi9upPIaaj0mn2NoDS0sm-4w5rY6gxphOsHI41GGq1MGXWx23WY4rfF8izGotLCEFPEJesWtxxzAljq-yHf9AhLmkqRgslcSdJU-ztULdRNsWcE7jnBQlWa2pqUC-pqTU1taVWWt8_CSxmhP658W9MBfiyAVA-9-QhqWw9TBZ6n8DOxb7_v8pvKQSt9w</recordid><startdate>20240815</startdate><enddate>20240815</enddate><creator>Ding, Zhiyuan</creator><creator>Huang, Yulang</creator><creator>Zeng, Xiangzhu</creator><creator>Jiang, Shiyin</creator><creator>Feng, Shuyang</creator><creator>Wang, Zhenduo</creator><creator>Wang, Ling</creator><creator>Wang, Zeng</creator><creator>Xu, Yingying</creator><creator>Liu, Yan</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0110-9297</orcidid><orcidid>https://orcid.org/0009-0003-7645-4834</orcidid></search><sort><creationdate>20240815</creationdate><title>Contrastive voxel clustering for multiscale modeling of brain network</title><author>Ding, Zhiyuan ; Huang, Yulang ; Zeng, Xiangzhu ; Jiang, Shiyin ; Feng, Shuyang ; Wang, Zhenduo ; Wang, Ling ; Wang, Zeng ; Xu, Yingying ; Liu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-45c71d6fdcc657d7cb447e08f27445a66c1e8fa24fa5b20ac69cb435b9e59143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blood levels</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Cluster Analysis</topic><topic>Connectome - methods</topic><topic>Contrastive clustering</topic><topic>Functional connectivity</topic><topic>Functional magnetic resonance imaging</topic><topic>Functional MRI (fMRI)</topic><topic>Graph neural network (GNN)</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Neurological</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuroimaging</topic><topic>Reactive oxygen species</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Zhiyuan</creatorcontrib><creatorcontrib>Huang, Yulang</creatorcontrib><creatorcontrib>Zeng, Xiangzhu</creatorcontrib><creatorcontrib>Jiang, Shiyin</creatorcontrib><creatorcontrib>Feng, Shuyang</creatorcontrib><creatorcontrib>Wang, Zhenduo</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Wang, Zeng</creatorcontrib><creatorcontrib>Xu, Yingying</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative (ADNI)</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative (ADNI)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Zhiyuan</au><au>Huang, Yulang</au><au>Zeng, Xiangzhu</au><au>Jiang, Shiyin</au><au>Feng, Shuyang</au><au>Wang, Zhenduo</au><au>Wang, Ling</au><au>Wang, Zeng</au><au>Xu, Yingying</au><au>Liu, Yan</au><aucorp>Alzheimer’s Disease Neuroimaging Initiative (ADNI)</aucorp><aucorp>Alzheimer’s Disease Neuroimaging Initiative (ADNI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrastive voxel clustering for multiscale modeling of brain network</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2024-08-15</date><risdate>2024</risdate><volume>297</volume><spage>120755</spage><pages>120755-</pages><artnum>120755</artnum><issn>1053-8119</issn><issn>1095-9572</issn><eissn>1095-9572</eissn><abstract>Resting-state functional magnetic resonance imaging (fMRI) provides an efficient way to analyze the functional connectivity between brain regions. A comprehensive understanding of brain functionality requires a unified description of multi-scale layers of neural structure. However, existing brain network modeling methods often simplify this property by averaging Blood oxygen level dependent (BOLD) signals at the brain region level for fMRI-based analysis with the assumption that BOLD signals are homogeneous within each brain region, which ignores the heterogeneity of voxels within each Region of Interest (ROI). This study introduces a novel multi-stage self-supervised learning framework for multiscale brain network analysis, which effectively delineates brain functionality from voxel to ROIs and up to sample level. A Contrastive Voxel Clustering (CVC) module is proposed to simultaneously learn the voxel-level features and clustering assignments, which ensures the retention of informative clustering features at the finest voxel-level and concurrently preserves functional connectivity characteristics. Additionally, based on the extracted features and clustering assignments at the voxel level by CVC, a Brain ROI-based Graph Neural Network (BR-GNN) is built to extract functional connectivity features at the brain ROI-level and used for sample-level prediction, which integrates the functional clustering maps with the pre-established structural ROI maps and creates a more comprehensive and effective analytical tool. Experiments are performed on two datasets, which illustrate the effectiveness and generalization ability of the proposed method by analyzing voxel-level clustering results and brain ROIs-level functional characteristics. The proposed method provides a multiscale modeling framework for brain functional connectivity analysis, which will be further used for other brain disease identification. Code is available at https://github.com/yanliugroup/fmri-cvc.
•The proposed method unravels the complexity of brain networks from voxels to regions and across samples.•The voxel-level BOLD signals are used to extract voxel-level clustering features and retain functional connectivity characteristics.•The multiscale modeling offers new insights into neurological diseases like Alzheimer’s.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39074761</pmid><doi>10.1016/j.neuroimage.2024.120755</doi><orcidid>https://orcid.org/0000-0003-0110-9297</orcidid><orcidid>https://orcid.org/0009-0003-7645-4834</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2024-08, Vol.297, p.120755, Article 120755 |
issn | 1053-8119 1095-9572 1095-9572 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a9f9d86f0abb4bbb87575760aeb4ca7b |
source | ScienceDirect Freedom Collection |
subjects | Blood levels Brain Brain - diagnostic imaging Brain - physiology Brain mapping Brain Mapping - methods Cluster Analysis Connectome - methods Contrastive clustering Functional connectivity Functional magnetic resonance imaging Functional MRI (fMRI) Graph neural network (GNN) Humans Image processing Image Processing, Computer-Assisted - methods Magnetic resonance imaging Magnetic Resonance Imaging - methods Models, Neurological Nerve Net - diagnostic imaging Nerve Net - physiology Neural networks Neural Networks, Computer Neuroimaging Reactive oxygen species Structure-function relationships |
title | Contrastive voxel clustering for multiscale modeling of brain network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrastive%20voxel%20clustering%20for%20multiscale%20modeling%20of%20brain%20network&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Ding,%20Zhiyuan&rft.aucorp=Alzheimer%E2%80%99s%20Disease%20Neuroimaging%20Initiative%20(ADNI)&rft.date=2024-08-15&rft.volume=297&rft.spage=120755&rft.pages=120755-&rft.artnum=120755&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2024.120755&rft_dat=%3Cproquest_doaj_%3E3086061554%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-45c71d6fdcc657d7cb447e08f27445a66c1e8fa24fa5b20ac69cb435b9e59143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090891239&rft_id=info:pmid/39074761&rfr_iscdi=true |