Loading…
A Binary Logistic Regression Model as a Tool to Predict Craft Beer Susceptibility to Microbial Spoilage
Beer spoilage caused by microorganisms, which is a major concern for brewers, produces undesirable aromas and flavors in the final product and substantial financial losses. To address this problem, brewers need easy-to-apply tools that inform them of beer susceptibility to the microbial spoilage. In...
Saved in:
Published in: | Foods 2021-08, Vol.10 (8), p.1926 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-8a1accd7637b96f9a4449944c72b8d20aac32dce6f5e8f00c44f3b7b0ecef7953 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-8a1accd7637b96f9a4449944c72b8d20aac32dce6f5e8f00c44f3b7b0ecef7953 |
container_end_page | |
container_issue | 8 |
container_start_page | 1926 |
container_title | Foods |
container_volume | 10 |
creator | Rodríguez-Saavedra, Magaly Pérez-Revelo, Karla Valero, Antonio Moreno-Arribas, M. Victoria González de Llano, Dolores |
description | Beer spoilage caused by microorganisms, which is a major concern for brewers, produces undesirable aromas and flavors in the final product and substantial financial losses. To address this problem, brewers need easy-to-apply tools that inform them of beer susceptibility to the microbial spoilage. In this study, a growth/no growth (G/NG) binary logistic regression model to predict this susceptibility was developed. Values of beer physicochemical parameters such as pH, alcohol content (% ABV), bitterness units (IBU), and yeast-fermentable extract (% YFE) obtained from the analysis of twenty commercially available craft beers were used to prepare 22 adjusted beers at different levels of each parameter studied. These preparations were assigned as a first group of samples, while 17 commercially available beers samples as a second group. The results of G/NG from both groups, after artificially inoculating with one wild yeast and different lactic acid bacteria (LAB) previously adapted to grow in a beer-type beverage, were used to design the model. The developed G/NG model correctly classified 276 of 331 analyzed cases and its predictive ability was 100% in external validation. This G/NG model has good sensitivity and goodness of fit (87% and 83.4%, respectively) and provides the potential to predict craft beer susceptibility to microbial spoilage. |
doi_str_mv | 10.3390/foods10081926 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aa2f32ecc4d44c229c26cd383f69a5e2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aa2f32ecc4d44c229c26cd383f69a5e2</doaj_id><sourcerecordid>2566029597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-8a1accd7637b96f9a4449944c72b8d20aac32dce6f5e8f00c44f3b7b0ecef7953</originalsourceid><addsrcrecordid>eNpdks9rFDEUx4eitKX26D3gxctoJj9mJhehXaoWtljaeg5vkpcxS3ayJjNC_3uzbhHXXBKSD5_33pdU1duGfuBc0Y8uRpsbSvtGsfakOmecirpvZP_qn_NZdZnzhpalGt5zdlqdcSFE01F-Xo1X5NpPkJ7JOo4-z96QBxwT5uzjRO6ixUAgEyBPMQYyR3Kf0Hozk1UCN5NrxEQel2xwN_vBBz8_76E7b1IcPATyuIs-wIhvqtcOQsbLl_2i-v755mn1tV5_-3K7ulrXRsh-rntowBjbtbwbVOsUlEaVEsJ0bOgtowCGM2uwdRJ7R6kRwvGhGygadJ2S_KK6PXhthI3eJb8ts-kIXv-5iGnUkMqUATUAc5yhMcKWAowpw1pjS0KuVSCRFdeng2u3DFssVac5QTiSHr9M_oce4y_d85K0VEXw_kWQ4s8F86y3vkQVAkwYl6yZbFvKlFRdQd_9h27ikqYS1Z6SjDeS8kLVB6rEm3NC97eZhur9j9BHP4L_BgqzqPc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565231503</pqid></control><display><type>article</type><title>A Binary Logistic Regression Model as a Tool to Predict Craft Beer Susceptibility to Microbial Spoilage</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Rodríguez-Saavedra, Magaly ; Pérez-Revelo, Karla ; Valero, Antonio ; Moreno-Arribas, M. Victoria ; González de Llano, Dolores</creator><creatorcontrib>Rodríguez-Saavedra, Magaly ; Pérez-Revelo, Karla ; Valero, Antonio ; Moreno-Arribas, M. Victoria ; González de Llano, Dolores</creatorcontrib><description>Beer spoilage caused by microorganisms, which is a major concern for brewers, produces undesirable aromas and flavors in the final product and substantial financial losses. To address this problem, brewers need easy-to-apply tools that inform them of beer susceptibility to the microbial spoilage. In this study, a growth/no growth (G/NG) binary logistic regression model to predict this susceptibility was developed. Values of beer physicochemical parameters such as pH, alcohol content (% ABV), bitterness units (IBU), and yeast-fermentable extract (% YFE) obtained from the analysis of twenty commercially available craft beers were used to prepare 22 adjusted beers at different levels of each parameter studied. These preparations were assigned as a first group of samples, while 17 commercially available beers samples as a second group. The results of G/NG from both groups, after artificially inoculating with one wild yeast and different lactic acid bacteria (LAB) previously adapted to grow in a beer-type beverage, were used to design the model. The developed G/NG model correctly classified 276 of 331 analyzed cases and its predictive ability was 100% in external validation. This G/NG model has good sensitivity and goodness of fit (87% and 83.4%, respectively) and provides the potential to predict craft beer susceptibility to microbial spoilage.</description><identifier>ISSN: 2304-8158</identifier><identifier>EISSN: 2304-8158</identifier><identifier>DOI: 10.3390/foods10081926</identifier><identifier>PMID: 34441703</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alcohol ; antimicrobial hurdles ; Bacteria ; Beer ; beer intrinsic factors ; Beverages ; Bitterness ; Breweries ; Ethanol ; Food science ; Goodness of fit ; Gram-positive bacteria ; growth/no growth ; Lactic acid ; Lactic acid bacteria ; Microorganisms ; model development ; Parameters ; Physicochemical properties ; Regression models ; Software ; Spoilage ; spoilage microorganisms ; Susceptibility ; susceptibility prediction ; Variance analysis ; Yeast ; Yeasts</subject><ispartof>Foods, 2021-08, Vol.10 (8), p.1926</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-8a1accd7637b96f9a4449944c72b8d20aac32dce6f5e8f00c44f3b7b0ecef7953</citedby><cites>FETCH-LOGICAL-c458t-8a1accd7637b96f9a4449944c72b8d20aac32dce6f5e8f00c44f3b7b0ecef7953</cites><orcidid>0000-0001-8140-7045 ; 0000-0001-6266-2585 ; 0000-0003-2044-615X ; 0000-0003-3232-0570 ; 0000-0002-4136-595X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565231503/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565231503?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Rodríguez-Saavedra, Magaly</creatorcontrib><creatorcontrib>Pérez-Revelo, Karla</creatorcontrib><creatorcontrib>Valero, Antonio</creatorcontrib><creatorcontrib>Moreno-Arribas, M. Victoria</creatorcontrib><creatorcontrib>González de Llano, Dolores</creatorcontrib><title>A Binary Logistic Regression Model as a Tool to Predict Craft Beer Susceptibility to Microbial Spoilage</title><title>Foods</title><description>Beer spoilage caused by microorganisms, which is a major concern for brewers, produces undesirable aromas and flavors in the final product and substantial financial losses. To address this problem, brewers need easy-to-apply tools that inform them of beer susceptibility to the microbial spoilage. In this study, a growth/no growth (G/NG) binary logistic regression model to predict this susceptibility was developed. Values of beer physicochemical parameters such as pH, alcohol content (% ABV), bitterness units (IBU), and yeast-fermentable extract (% YFE) obtained from the analysis of twenty commercially available craft beers were used to prepare 22 adjusted beers at different levels of each parameter studied. These preparations were assigned as a first group of samples, while 17 commercially available beers samples as a second group. The results of G/NG from both groups, after artificially inoculating with one wild yeast and different lactic acid bacteria (LAB) previously adapted to grow in a beer-type beverage, were used to design the model. The developed G/NG model correctly classified 276 of 331 analyzed cases and its predictive ability was 100% in external validation. This G/NG model has good sensitivity and goodness of fit (87% and 83.4%, respectively) and provides the potential to predict craft beer susceptibility to microbial spoilage.</description><subject>Alcohol</subject><subject>antimicrobial hurdles</subject><subject>Bacteria</subject><subject>Beer</subject><subject>beer intrinsic factors</subject><subject>Beverages</subject><subject>Bitterness</subject><subject>Breweries</subject><subject>Ethanol</subject><subject>Food science</subject><subject>Goodness of fit</subject><subject>Gram-positive bacteria</subject><subject>growth/no growth</subject><subject>Lactic acid</subject><subject>Lactic acid bacteria</subject><subject>Microorganisms</subject><subject>model development</subject><subject>Parameters</subject><subject>Physicochemical properties</subject><subject>Regression models</subject><subject>Software</subject><subject>Spoilage</subject><subject>spoilage microorganisms</subject><subject>Susceptibility</subject><subject>susceptibility prediction</subject><subject>Variance analysis</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>2304-8158</issn><issn>2304-8158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rFDEUx4eitKX26D3gxctoJj9mJhehXaoWtljaeg5vkpcxS3ayJjNC_3uzbhHXXBKSD5_33pdU1duGfuBc0Y8uRpsbSvtGsfakOmecirpvZP_qn_NZdZnzhpalGt5zdlqdcSFE01F-Xo1X5NpPkJ7JOo4-z96QBxwT5uzjRO6ixUAgEyBPMQYyR3Kf0Hozk1UCN5NrxEQel2xwN_vBBz8_76E7b1IcPATyuIs-wIhvqtcOQsbLl_2i-v755mn1tV5_-3K7ulrXRsh-rntowBjbtbwbVOsUlEaVEsJ0bOgtowCGM2uwdRJ7R6kRwvGhGygadJ2S_KK6PXhthI3eJb8ts-kIXv-5iGnUkMqUATUAc5yhMcKWAowpw1pjS0KuVSCRFdeng2u3DFssVac5QTiSHr9M_oce4y_d85K0VEXw_kWQ4s8F86y3vkQVAkwYl6yZbFvKlFRdQd_9h27ikqYS1Z6SjDeS8kLVB6rEm3NC97eZhur9j9BHP4L_BgqzqPc</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Rodríguez-Saavedra, Magaly</creator><creator>Pérez-Revelo, Karla</creator><creator>Valero, Antonio</creator><creator>Moreno-Arribas, M. Victoria</creator><creator>González de Llano, Dolores</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8140-7045</orcidid><orcidid>https://orcid.org/0000-0001-6266-2585</orcidid><orcidid>https://orcid.org/0000-0003-2044-615X</orcidid><orcidid>https://orcid.org/0000-0003-3232-0570</orcidid><orcidid>https://orcid.org/0000-0002-4136-595X</orcidid></search><sort><creationdate>20210819</creationdate><title>A Binary Logistic Regression Model as a Tool to Predict Craft Beer Susceptibility to Microbial Spoilage</title><author>Rodríguez-Saavedra, Magaly ; Pérez-Revelo, Karla ; Valero, Antonio ; Moreno-Arribas, M. Victoria ; González de Llano, Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-8a1accd7637b96f9a4449944c72b8d20aac32dce6f5e8f00c44f3b7b0ecef7953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alcohol</topic><topic>antimicrobial hurdles</topic><topic>Bacteria</topic><topic>Beer</topic><topic>beer intrinsic factors</topic><topic>Beverages</topic><topic>Bitterness</topic><topic>Breweries</topic><topic>Ethanol</topic><topic>Food science</topic><topic>Goodness of fit</topic><topic>Gram-positive bacteria</topic><topic>growth/no growth</topic><topic>Lactic acid</topic><topic>Lactic acid bacteria</topic><topic>Microorganisms</topic><topic>model development</topic><topic>Parameters</topic><topic>Physicochemical properties</topic><topic>Regression models</topic><topic>Software</topic><topic>Spoilage</topic><topic>spoilage microorganisms</topic><topic>Susceptibility</topic><topic>susceptibility prediction</topic><topic>Variance analysis</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Saavedra, Magaly</creatorcontrib><creatorcontrib>Pérez-Revelo, Karla</creatorcontrib><creatorcontrib>Valero, Antonio</creatorcontrib><creatorcontrib>Moreno-Arribas, M. Victoria</creatorcontrib><creatorcontrib>González de Llano, Dolores</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Foods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Saavedra, Magaly</au><au>Pérez-Revelo, Karla</au><au>Valero, Antonio</au><au>Moreno-Arribas, M. Victoria</au><au>González de Llano, Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Binary Logistic Regression Model as a Tool to Predict Craft Beer Susceptibility to Microbial Spoilage</atitle><jtitle>Foods</jtitle><date>2021-08-19</date><risdate>2021</risdate><volume>10</volume><issue>8</issue><spage>1926</spage><pages>1926-</pages><issn>2304-8158</issn><eissn>2304-8158</eissn><abstract>Beer spoilage caused by microorganisms, which is a major concern for brewers, produces undesirable aromas and flavors in the final product and substantial financial losses. To address this problem, brewers need easy-to-apply tools that inform them of beer susceptibility to the microbial spoilage. In this study, a growth/no growth (G/NG) binary logistic regression model to predict this susceptibility was developed. Values of beer physicochemical parameters such as pH, alcohol content (% ABV), bitterness units (IBU), and yeast-fermentable extract (% YFE) obtained from the analysis of twenty commercially available craft beers were used to prepare 22 adjusted beers at different levels of each parameter studied. These preparations were assigned as a first group of samples, while 17 commercially available beers samples as a second group. The results of G/NG from both groups, after artificially inoculating with one wild yeast and different lactic acid bacteria (LAB) previously adapted to grow in a beer-type beverage, were used to design the model. The developed G/NG model correctly classified 276 of 331 analyzed cases and its predictive ability was 100% in external validation. This G/NG model has good sensitivity and goodness of fit (87% and 83.4%, respectively) and provides the potential to predict craft beer susceptibility to microbial spoilage.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34441703</pmid><doi>10.3390/foods10081926</doi><orcidid>https://orcid.org/0000-0001-8140-7045</orcidid><orcidid>https://orcid.org/0000-0001-6266-2585</orcidid><orcidid>https://orcid.org/0000-0003-2044-615X</orcidid><orcidid>https://orcid.org/0000-0003-3232-0570</orcidid><orcidid>https://orcid.org/0000-0002-4136-595X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2304-8158 |
ispartof | Foods, 2021-08, Vol.10 (8), p.1926 |
issn | 2304-8158 2304-8158 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_aa2f32ecc4d44c229c26cd383f69a5e2 |
source | Publicly Available Content Database; PubMed Central |
subjects | Alcohol antimicrobial hurdles Bacteria Beer beer intrinsic factors Beverages Bitterness Breweries Ethanol Food science Goodness of fit Gram-positive bacteria growth/no growth Lactic acid Lactic acid bacteria Microorganisms model development Parameters Physicochemical properties Regression models Software Spoilage spoilage microorganisms Susceptibility susceptibility prediction Variance analysis Yeast Yeasts |
title | A Binary Logistic Regression Model as a Tool to Predict Craft Beer Susceptibility to Microbial Spoilage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Binary%20Logistic%20Regression%20Model%20as%20a%20Tool%20to%20Predict%20Craft%20Beer%20Susceptibility%20to%20Microbial%20Spoilage&rft.jtitle=Foods&rft.au=Rodr%C3%ADguez-Saavedra,%20Magaly&rft.date=2021-08-19&rft.volume=10&rft.issue=8&rft.spage=1926&rft.pages=1926-&rft.issn=2304-8158&rft.eissn=2304-8158&rft_id=info:doi/10.3390/foods10081926&rft_dat=%3Cproquest_doaj_%3E2566029597%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-8a1accd7637b96f9a4449944c72b8d20aac32dce6f5e8f00c44f3b7b0ecef7953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565231503&rft_id=info:pmid/34441703&rfr_iscdi=true |