Loading…
Bayesian Inference for the Loss Models via Mixture Priors
Constructing an accurate model for insurance losses is a challenging task. Researchers have developed various methods to model insurance losses, such as composite models. Composite models combine two distributions: one for part of the data with small and high frequencies and the other for large valu...
Saved in:
Published in: | Risks (Basel) 2023-09, Vol.11 (9), p.156 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-3cfc544f380afc7cf53dd6ec5fc7071a84d2bffb62e96b8da456f539e3ee13ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-3cfc544f380afc7cf53dd6ec5fc7071a84d2bffb62e96b8da456f539e3ee13ea3 |
container_end_page | |
container_issue | 9 |
container_start_page | 156 |
container_title | Risks (Basel) |
container_volume | 11 |
creator | Deng, Min Aminzadeh, Mostafa S. |
description | Constructing an accurate model for insurance losses is a challenging task. Researchers have developed various methods to model insurance losses, such as composite models. Composite models combine two distributions: one for part of the data with small and high frequencies and the other for large values with low frequencies. The purpose of this article is to consider a mixture of prior distributions for exponential–Pareto and inverse-gamma–Pareto composite models. The general formulas for the posterior distribution and the Bayes estimator of the support parameter θ are derived. It is shown that the posterior distribution is a mixture of individual posterior distributions. Analytic results and Bayesian inference based on the proposed mixture prior distribution approach are provided. Simulation studies reveal that the Bayes estimator with a mixture distribution outperforms the Bayes estimator without a mixture distribution and the ML estimator regarding their accuracies. Based on the proposed method, the insurance losses from natural events, such as floods from 2000 to 2019 in the USA, are considered. As a measure of goodness-of-fit, the Bayes factor is used to choose the best-fitted model. |
doi_str_mv | 10.3390/risks11090156 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aa3f6bfe30094461a42ccdc217a0cc56</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780021012</galeid><doaj_id>oai_doaj_org_article_aa3f6bfe30094461a42ccdc217a0cc56</doaj_id><sourcerecordid>A780021012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-3cfc544f380afc7cf53dd6ec5fc7071a84d2bffb62e96b8da456f539e3ee13ea3</originalsourceid><addsrcrecordid>eNpVUclOwzAQjRBIVKVH7pE4p3iLEx9LxVKpCA5wtibOuLi0cbFTRP8eQxCCmcMseu9pliw7p2TKuSKXwcXXSClRhJbyKBsxxqpCEUWP_-Sn2STGNUmmKK8lGWXqCg4YHXT5orMYsDOYWx_y_gXzpY8xv_ctbmL-7iC_dx_9PmD-GJwP8Sw7sbCJOPmJ4-z55vppflcsH24X89myMIKLvuDGmlIIy2sC1lTGlrxtJZoyFaSiUIuWNdY2kqGSTd2CKGXCKOSIlCPwcbYYdFsPa70LbgvhoD04_d3wYaUh9M5sUANwKxuLPO0nhKQgmDGtYbQCYkwpk9bFoLUL_m2Psddrvw9dGl-zWqpSCs7KhJoOqBUkUddZ3wcwyVvcOuM7tC71Z1VNCKOEskQoBoIJ6WQB7e-YlOiv7-h_3-Gfe9CCFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869564325</pqid></control><display><type>article</type><title>Bayesian Inference for the Loss Models via Mixture Priors</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Collection</source><source>ProQuest - Publicly Available Content Database</source><creator>Deng, Min ; Aminzadeh, Mostafa S.</creator><creatorcontrib>Deng, Min ; Aminzadeh, Mostafa S.</creatorcontrib><description>Constructing an accurate model for insurance losses is a challenging task. Researchers have developed various methods to model insurance losses, such as composite models. Composite models combine two distributions: one for part of the data with small and high frequencies and the other for large values with low frequencies. The purpose of this article is to consider a mixture of prior distributions for exponential–Pareto and inverse-gamma–Pareto composite models. The general formulas for the posterior distribution and the Bayes estimator of the support parameter θ are derived. It is shown that the posterior distribution is a mixture of individual posterior distributions. Analytic results and Bayesian inference based on the proposed mixture prior distribution approach are provided. Simulation studies reveal that the Bayes estimator with a mixture distribution outperforms the Bayes estimator without a mixture distribution and the ML estimator regarding their accuracies. Based on the proposed method, the insurance losses from natural events, such as floods from 2000 to 2019 in the USA, are considered. As a measure of goodness-of-fit, the Bayes factor is used to choose the best-fitted model.</description><identifier>ISSN: 2227-9091</identifier><identifier>EISSN: 2227-9091</identifier><identifier>DOI: 10.3390/risks11090156</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Actuarial science ; Bayes factor ; Bayesian estimation ; Bayesian statistical decision theory ; Claims adjustment (Insurance) ; composite model ; Estimates ; Insurance industry ; marginal likelihood ; Methods ; mixture posterior distribution ; mixture prior distribution ; Parameter estimation ; Random variables</subject><ispartof>Risks (Basel), 2023-09, Vol.11 (9), p.156</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-3cfc544f380afc7cf53dd6ec5fc7071a84d2bffb62e96b8da456f539e3ee13ea3</citedby><cites>FETCH-LOGICAL-c434t-3cfc544f380afc7cf53dd6ec5fc7071a84d2bffb62e96b8da456f539e3ee13ea3</cites><orcidid>0000-0002-4827-6351 ; 0000-0001-6076-7762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869564325/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869564325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11687,25752,27923,27924,36059,37011,44362,44589,74666,74897</link.rule.ids></links><search><creatorcontrib>Deng, Min</creatorcontrib><creatorcontrib>Aminzadeh, Mostafa S.</creatorcontrib><title>Bayesian Inference for the Loss Models via Mixture Priors</title><title>Risks (Basel)</title><description>Constructing an accurate model for insurance losses is a challenging task. Researchers have developed various methods to model insurance losses, such as composite models. Composite models combine two distributions: one for part of the data with small and high frequencies and the other for large values with low frequencies. The purpose of this article is to consider a mixture of prior distributions for exponential–Pareto and inverse-gamma–Pareto composite models. The general formulas for the posterior distribution and the Bayes estimator of the support parameter θ are derived. It is shown that the posterior distribution is a mixture of individual posterior distributions. Analytic results and Bayesian inference based on the proposed mixture prior distribution approach are provided. Simulation studies reveal that the Bayes estimator with a mixture distribution outperforms the Bayes estimator without a mixture distribution and the ML estimator regarding their accuracies. Based on the proposed method, the insurance losses from natural events, such as floods from 2000 to 2019 in the USA, are considered. As a measure of goodness-of-fit, the Bayes factor is used to choose the best-fitted model.</description><subject>Actuarial science</subject><subject>Bayes factor</subject><subject>Bayesian estimation</subject><subject>Bayesian statistical decision theory</subject><subject>Claims adjustment (Insurance)</subject><subject>composite model</subject><subject>Estimates</subject><subject>Insurance industry</subject><subject>marginal likelihood</subject><subject>Methods</subject><subject>mixture posterior distribution</subject><subject>mixture prior distribution</subject><subject>Parameter estimation</subject><subject>Random variables</subject><issn>2227-9091</issn><issn>2227-9091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUclOwzAQjRBIVKVH7pE4p3iLEx9LxVKpCA5wtibOuLi0cbFTRP8eQxCCmcMseu9pliw7p2TKuSKXwcXXSClRhJbyKBsxxqpCEUWP_-Sn2STGNUmmKK8lGWXqCg4YHXT5orMYsDOYWx_y_gXzpY8xv_ctbmL-7iC_dx_9PmD-GJwP8Sw7sbCJOPmJ4-z55vppflcsH24X89myMIKLvuDGmlIIy2sC1lTGlrxtJZoyFaSiUIuWNdY2kqGSTd2CKGXCKOSIlCPwcbYYdFsPa70LbgvhoD04_d3wYaUh9M5sUANwKxuLPO0nhKQgmDGtYbQCYkwpk9bFoLUL_m2Psddrvw9dGl-zWqpSCs7KhJoOqBUkUddZ3wcwyVvcOuM7tC71Z1VNCKOEskQoBoIJ6WQB7e-YlOiv7-h_3-Gfe9CCFQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Deng, Min</creator><creator>Aminzadeh, Mostafa S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4827-6351</orcidid><orcidid>https://orcid.org/0000-0001-6076-7762</orcidid></search><sort><creationdate>20230901</creationdate><title>Bayesian Inference for the Loss Models via Mixture Priors</title><author>Deng, Min ; Aminzadeh, Mostafa S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-3cfc544f380afc7cf53dd6ec5fc7071a84d2bffb62e96b8da456f539e3ee13ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuarial science</topic><topic>Bayes factor</topic><topic>Bayesian estimation</topic><topic>Bayesian statistical decision theory</topic><topic>Claims adjustment (Insurance)</topic><topic>composite model</topic><topic>Estimates</topic><topic>Insurance industry</topic><topic>marginal likelihood</topic><topic>Methods</topic><topic>mixture posterior distribution</topic><topic>mixture prior distribution</topic><topic>Parameter estimation</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Min</creatorcontrib><creatorcontrib>Aminzadeh, Mostafa S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Complete database</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Risks (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Min</au><au>Aminzadeh, Mostafa S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Inference for the Loss Models via Mixture Priors</atitle><jtitle>Risks (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>11</volume><issue>9</issue><spage>156</spage><pages>156-</pages><issn>2227-9091</issn><eissn>2227-9091</eissn><abstract>Constructing an accurate model for insurance losses is a challenging task. Researchers have developed various methods to model insurance losses, such as composite models. Composite models combine two distributions: one for part of the data with small and high frequencies and the other for large values with low frequencies. The purpose of this article is to consider a mixture of prior distributions for exponential–Pareto and inverse-gamma–Pareto composite models. The general formulas for the posterior distribution and the Bayes estimator of the support parameter θ are derived. It is shown that the posterior distribution is a mixture of individual posterior distributions. Analytic results and Bayesian inference based on the proposed mixture prior distribution approach are provided. Simulation studies reveal that the Bayes estimator with a mixture distribution outperforms the Bayes estimator without a mixture distribution and the ML estimator regarding their accuracies. Based on the proposed method, the insurance losses from natural events, such as floods from 2000 to 2019 in the USA, are considered. As a measure of goodness-of-fit, the Bayes factor is used to choose the best-fitted model.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/risks11090156</doi><orcidid>https://orcid.org/0000-0002-4827-6351</orcidid><orcidid>https://orcid.org/0000-0001-6076-7762</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9091 |
ispartof | Risks (Basel), 2023-09, Vol.11 (9), p.156 |
issn | 2227-9091 2227-9091 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_aa3f6bfe30094461a42ccdc217a0cc56 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Collection; ProQuest - Publicly Available Content Database |
subjects | Actuarial science Bayes factor Bayesian estimation Bayesian statistical decision theory Claims adjustment (Insurance) composite model Estimates Insurance industry marginal likelihood Methods mixture posterior distribution mixture prior distribution Parameter estimation Random variables |
title | Bayesian Inference for the Loss Models via Mixture Priors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Inference%20for%20the%20Loss%20Models%20via%20Mixture%20Priors&rft.jtitle=Risks%20(Basel)&rft.au=Deng,%20Min&rft.date=2023-09-01&rft.volume=11&rft.issue=9&rft.spage=156&rft.pages=156-&rft.issn=2227-9091&rft.eissn=2227-9091&rft_id=info:doi/10.3390/risks11090156&rft_dat=%3Cgale_doaj_%3EA780021012%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-3cfc544f380afc7cf53dd6ec5fc7071a84d2bffb62e96b8da456f539e3ee13ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869564325&rft_id=info:pmid/&rft_galeid=A780021012&rfr_iscdi=true |