Loading…
Improved Gravitational Search Algorithm Based on Adaptive Strategies
The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algori...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2022-12, Vol.24 (12), p.1826 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623 |
container_end_page | |
container_issue | 12 |
container_start_page | 1826 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 24 |
creator | Yang, Zhonghua Cai, Yuanli Li, Ge |
description | The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings, an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm uses the adaptive strategy to improve the updating methods for the distance between particles, gravitational constant, and position in the gravitational search model. This strengthens the information interaction between particles in the group and improves the exploration and exploitation capacity of the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for simulation performance tests, and the CEC2017 benchmark function was used for a comparison test. The test results show that the improved gravitational search algorithm can address the tendency of the original algorithm to fall into local extrema and significantly improve both the solution accuracy and the ability to find the globally optimal solution. |
doi_str_mv | 10.3390/e24121826 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aa560e42882148728b87999f6e58effa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745709835</galeid><doaj_id>oai_doaj_org_article_aa560e42882148728b87999f6e58effa</doaj_id><sourcerecordid>A745709835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIRD_gwB9AK3GhhxR_f1yQ0gIlUiUOhbM1sWcTR7vrYG8i8e9xmxK1yAdbM8-8M2O9TfOOkkvOLfmETFBGDVMvmlNKrJ0JTsjLJ--T5qyUDSGMM6peNydcSSkYJ6fNl8WwzWmPob3JsI8TTDGN0Ld3CNmv23m_SjlO66G9glKhNLbzANsp7rG9mzJMuIpY3jSvOugLvn28z5tf377-vP4-u_1xs7ie3868JGaaeYGkjmk6agKVoMOSAuXIhVCBex0oqk5ZaU3QS26INoIB94ICKMuDYvy8WRx0Q4KN2-Y4QP7jEkT3EEh55SBP0ffoAKQiKJgxjAqjmVkaba3tFEqDXQdV6_NBa7tbDhg8jnWd_pno88wY126V9s5qbbg1VeDjo0BOv3dYJjfE4rHvYcS0K45paSjlVIqKfvgP3aRdrt_8QClltFayUpcHagV1gTh2qfb19QQcok8jdrHG51pITWr_-4KLQ4HPqZSM3XF6Sty9MdzRGJV9_3TdI_nPCfwvMiSwtg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756687765</pqid></control><display><type>article</type><title>Improved Gravitational Search Algorithm Based on Adaptive Strategies</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Yang, Zhonghua ; Cai, Yuanli ; Li, Ge</creator><creatorcontrib>Yang, Zhonghua ; Cai, Yuanli ; Li, Ge</creatorcontrib><description>The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings, an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm uses the adaptive strategy to improve the updating methods for the distance between particles, gravitational constant, and position in the gravitational search model. This strengthens the information interaction between particles in the group and improves the exploration and exploitation capacity of the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for simulation performance tests, and the CEC2017 benchmark function was used for a comparison test. The test results show that the improved gravitational search algorithm can address the tendency of the original algorithm to fall into local extrema and significantly improve both the solution accuracy and the ability to find the globally optimal solution.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24121826</identifier><identifier>PMID: 36554230</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptive algorithms ; Adaptive search techniques ; adaptive strategy ; Algorithms ; Comparative analysis ; Global optimization ; Gravitational constant ; gravitational search algorithm ; Mathematical optimization ; Mutation ; Optimization algorithms ; Parameter estimation ; particle information interaction ; Performance tests ; Population density ; Search algorithms ; Swarm intelligence ; swarm intelligence algorithm</subject><ispartof>Entropy (Basel, Switzerland), 2022-12, Vol.24 (12), p.1826</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623</citedby><cites>FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623</cites><orcidid>0000-0001-7364-3101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756687765/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756687765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36554230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Zhonghua</creatorcontrib><creatorcontrib>Cai, Yuanli</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><title>Improved Gravitational Search Algorithm Based on Adaptive Strategies</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings, an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm uses the adaptive strategy to improve the updating methods for the distance between particles, gravitational constant, and position in the gravitational search model. This strengthens the information interaction between particles in the group and improves the exploration and exploitation capacity of the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for simulation performance tests, and the CEC2017 benchmark function was used for a comparison test. The test results show that the improved gravitational search algorithm can address the tendency of the original algorithm to fall into local extrema and significantly improve both the solution accuracy and the ability to find the globally optimal solution.</description><subject>Adaptive algorithms</subject><subject>Adaptive search techniques</subject><subject>adaptive strategy</subject><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>Global optimization</subject><subject>Gravitational constant</subject><subject>gravitational search algorithm</subject><subject>Mathematical optimization</subject><subject>Mutation</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>particle information interaction</subject><subject>Performance tests</subject><subject>Population density</subject><subject>Search algorithms</subject><subject>Swarm intelligence</subject><subject>swarm intelligence algorithm</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhlcIRD_gwB9AK3GhhxR_f1yQ0gIlUiUOhbM1sWcTR7vrYG8i8e9xmxK1yAdbM8-8M2O9TfOOkkvOLfmETFBGDVMvmlNKrJ0JTsjLJ--T5qyUDSGMM6peNydcSSkYJ6fNl8WwzWmPob3JsI8TTDGN0Ld3CNmv23m_SjlO66G9glKhNLbzANsp7rG9mzJMuIpY3jSvOugLvn28z5tf377-vP4-u_1xs7ie3868JGaaeYGkjmk6agKVoMOSAuXIhVCBex0oqk5ZaU3QS26INoIB94ICKMuDYvy8WRx0Q4KN2-Y4QP7jEkT3EEh55SBP0ffoAKQiKJgxjAqjmVkaba3tFEqDXQdV6_NBa7tbDhg8jnWd_pno88wY126V9s5qbbg1VeDjo0BOv3dYJjfE4rHvYcS0K45paSjlVIqKfvgP3aRdrt_8QClltFayUpcHagV1gTh2qfb19QQcok8jdrHG51pITWr_-4KLQ4HPqZSM3XF6Sty9MdzRGJV9_3TdI_nPCfwvMiSwtg</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Yang, Zhonghua</creator><creator>Cai, Yuanli</creator><creator>Li, Ge</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7364-3101</orcidid></search><sort><creationdate>20221214</creationdate><title>Improved Gravitational Search Algorithm Based on Adaptive Strategies</title><author>Yang, Zhonghua ; Cai, Yuanli ; Li, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive search techniques</topic><topic>adaptive strategy</topic><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>Global optimization</topic><topic>Gravitational constant</topic><topic>gravitational search algorithm</topic><topic>Mathematical optimization</topic><topic>Mutation</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>particle information interaction</topic><topic>Performance tests</topic><topic>Population density</topic><topic>Search algorithms</topic><topic>Swarm intelligence</topic><topic>swarm intelligence algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhonghua</creatorcontrib><creatorcontrib>Cai, Yuanli</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhonghua</au><au>Cai, Yuanli</au><au>Li, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Gravitational Search Algorithm Based on Adaptive Strategies</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2022-12-14</date><risdate>2022</risdate><volume>24</volume><issue>12</issue><spage>1826</spage><pages>1826-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings, an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm uses the adaptive strategy to improve the updating methods for the distance between particles, gravitational constant, and position in the gravitational search model. This strengthens the information interaction between particles in the group and improves the exploration and exploitation capacity of the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for simulation performance tests, and the CEC2017 benchmark function was used for a comparison test. The test results show that the improved gravitational search algorithm can address the tendency of the original algorithm to fall into local extrema and significantly improve both the solution accuracy and the ability to find the globally optimal solution.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36554230</pmid><doi>10.3390/e24121826</doi><orcidid>https://orcid.org/0000-0001-7364-3101</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2022-12, Vol.24 (12), p.1826 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_aa560e42882148728b87999f6e58effa |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Adaptive algorithms Adaptive search techniques adaptive strategy Algorithms Comparative analysis Global optimization Gravitational constant gravitational search algorithm Mathematical optimization Mutation Optimization algorithms Parameter estimation particle information interaction Performance tests Population density Search algorithms Swarm intelligence swarm intelligence algorithm |
title | Improved Gravitational Search Algorithm Based on Adaptive Strategies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Gravitational%20Search%20Algorithm%20Based%20on%20Adaptive%20Strategies&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Yang,%20Zhonghua&rft.date=2022-12-14&rft.volume=24&rft.issue=12&rft.spage=1826&rft.pages=1826-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24121826&rft_dat=%3Cgale_doaj_%3EA745709835%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756687765&rft_id=info:pmid/36554230&rft_galeid=A745709835&rfr_iscdi=true |