Loading…

Improved Gravitational Search Algorithm Based on Adaptive Strategies

The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algori...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2022-12, Vol.24 (12), p.1826
Main Authors: Yang, Zhonghua, Cai, Yuanli, Li, Ge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623
cites cdi_FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623
container_end_page
container_issue 12
container_start_page 1826
container_title Entropy (Basel, Switzerland)
container_volume 24
creator Yang, Zhonghua
Cai, Yuanli
Li, Ge
description The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings, an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm uses the adaptive strategy to improve the updating methods for the distance between particles, gravitational constant, and position in the gravitational search model. This strengthens the information interaction between particles in the group and improves the exploration and exploitation capacity of the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for simulation performance tests, and the CEC2017 benchmark function was used for a comparison test. The test results show that the improved gravitational search algorithm can address the tendency of the original algorithm to fall into local extrema and significantly improve both the solution accuracy and the ability to find the globally optimal solution.
doi_str_mv 10.3390/e24121826
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aa560e42882148728b87999f6e58effa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745709835</galeid><doaj_id>oai_doaj_org_article_aa560e42882148728b87999f6e58effa</doaj_id><sourcerecordid>A745709835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIRD_gwB9AK3GhhxR_f1yQ0gIlUiUOhbM1sWcTR7vrYG8i8e9xmxK1yAdbM8-8M2O9TfOOkkvOLfmETFBGDVMvmlNKrJ0JTsjLJ--T5qyUDSGMM6peNydcSSkYJ6fNl8WwzWmPob3JsI8TTDGN0Ld3CNmv23m_SjlO66G9glKhNLbzANsp7rG9mzJMuIpY3jSvOugLvn28z5tf377-vP4-u_1xs7ie3868JGaaeYGkjmk6agKVoMOSAuXIhVCBex0oqk5ZaU3QS26INoIB94ICKMuDYvy8WRx0Q4KN2-Y4QP7jEkT3EEh55SBP0ffoAKQiKJgxjAqjmVkaba3tFEqDXQdV6_NBa7tbDhg8jnWd_pno88wY126V9s5qbbg1VeDjo0BOv3dYJjfE4rHvYcS0K45paSjlVIqKfvgP3aRdrt_8QClltFayUpcHagV1gTh2qfb19QQcok8jdrHG51pITWr_-4KLQ4HPqZSM3XF6Sty9MdzRGJV9_3TdI_nPCfwvMiSwtg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756687765</pqid></control><display><type>article</type><title>Improved Gravitational Search Algorithm Based on Adaptive Strategies</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Yang, Zhonghua ; Cai, Yuanli ; Li, Ge</creator><creatorcontrib>Yang, Zhonghua ; Cai, Yuanli ; Li, Ge</creatorcontrib><description>The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings, an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm uses the adaptive strategy to improve the updating methods for the distance between particles, gravitational constant, and position in the gravitational search model. This strengthens the information interaction between particles in the group and improves the exploration and exploitation capacity of the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for simulation performance tests, and the CEC2017 benchmark function was used for a comparison test. The test results show that the improved gravitational search algorithm can address the tendency of the original algorithm to fall into local extrema and significantly improve both the solution accuracy and the ability to find the globally optimal solution.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24121826</identifier><identifier>PMID: 36554230</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptive algorithms ; Adaptive search techniques ; adaptive strategy ; Algorithms ; Comparative analysis ; Global optimization ; Gravitational constant ; gravitational search algorithm ; Mathematical optimization ; Mutation ; Optimization algorithms ; Parameter estimation ; particle information interaction ; Performance tests ; Population density ; Search algorithms ; Swarm intelligence ; swarm intelligence algorithm</subject><ispartof>Entropy (Basel, Switzerland), 2022-12, Vol.24 (12), p.1826</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623</citedby><cites>FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623</cites><orcidid>0000-0001-7364-3101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756687765/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756687765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36554230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Zhonghua</creatorcontrib><creatorcontrib>Cai, Yuanli</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><title>Improved Gravitational Search Algorithm Based on Adaptive Strategies</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings, an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm uses the adaptive strategy to improve the updating methods for the distance between particles, gravitational constant, and position in the gravitational search model. This strengthens the information interaction between particles in the group and improves the exploration and exploitation capacity of the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for simulation performance tests, and the CEC2017 benchmark function was used for a comparison test. The test results show that the improved gravitational search algorithm can address the tendency of the original algorithm to fall into local extrema and significantly improve both the solution accuracy and the ability to find the globally optimal solution.</description><subject>Adaptive algorithms</subject><subject>Adaptive search techniques</subject><subject>adaptive strategy</subject><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>Global optimization</subject><subject>Gravitational constant</subject><subject>gravitational search algorithm</subject><subject>Mathematical optimization</subject><subject>Mutation</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>particle information interaction</subject><subject>Performance tests</subject><subject>Population density</subject><subject>Search algorithms</subject><subject>Swarm intelligence</subject><subject>swarm intelligence algorithm</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhlcIRD_gwB9AK3GhhxR_f1yQ0gIlUiUOhbM1sWcTR7vrYG8i8e9xmxK1yAdbM8-8M2O9TfOOkkvOLfmETFBGDVMvmlNKrJ0JTsjLJ--T5qyUDSGMM6peNydcSSkYJ6fNl8WwzWmPob3JsI8TTDGN0Ld3CNmv23m_SjlO66G9glKhNLbzANsp7rG9mzJMuIpY3jSvOugLvn28z5tf377-vP4-u_1xs7ie3868JGaaeYGkjmk6agKVoMOSAuXIhVCBex0oqk5ZaU3QS26INoIB94ICKMuDYvy8WRx0Q4KN2-Y4QP7jEkT3EEh55SBP0ffoAKQiKJgxjAqjmVkaba3tFEqDXQdV6_NBa7tbDhg8jnWd_pno88wY126V9s5qbbg1VeDjo0BOv3dYJjfE4rHvYcS0K45paSjlVIqKfvgP3aRdrt_8QClltFayUpcHagV1gTh2qfb19QQcok8jdrHG51pITWr_-4KLQ4HPqZSM3XF6Sty9MdzRGJV9_3TdI_nPCfwvMiSwtg</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Yang, Zhonghua</creator><creator>Cai, Yuanli</creator><creator>Li, Ge</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7364-3101</orcidid></search><sort><creationdate>20221214</creationdate><title>Improved Gravitational Search Algorithm Based on Adaptive Strategies</title><author>Yang, Zhonghua ; Cai, Yuanli ; Li, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive search techniques</topic><topic>adaptive strategy</topic><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>Global optimization</topic><topic>Gravitational constant</topic><topic>gravitational search algorithm</topic><topic>Mathematical optimization</topic><topic>Mutation</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>particle information interaction</topic><topic>Performance tests</topic><topic>Population density</topic><topic>Search algorithms</topic><topic>Swarm intelligence</topic><topic>swarm intelligence algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhonghua</creatorcontrib><creatorcontrib>Cai, Yuanli</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhonghua</au><au>Cai, Yuanli</au><au>Li, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Gravitational Search Algorithm Based on Adaptive Strategies</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2022-12-14</date><risdate>2022</risdate><volume>24</volume><issue>12</issue><spage>1826</spage><pages>1826-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings, an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm uses the adaptive strategy to improve the updating methods for the distance between particles, gravitational constant, and position in the gravitational search model. This strengthens the information interaction between particles in the group and improves the exploration and exploitation capacity of the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for simulation performance tests, and the CEC2017 benchmark function was used for a comparison test. The test results show that the improved gravitational search algorithm can address the tendency of the original algorithm to fall into local extrema and significantly improve both the solution accuracy and the ability to find the globally optimal solution.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36554230</pmid><doi>10.3390/e24121826</doi><orcidid>https://orcid.org/0000-0001-7364-3101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2022-12, Vol.24 (12), p.1826
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_aa560e42882148728b87999f6e58effa
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; PubMed Central
subjects Adaptive algorithms
Adaptive search techniques
adaptive strategy
Algorithms
Comparative analysis
Global optimization
Gravitational constant
gravitational search algorithm
Mathematical optimization
Mutation
Optimization algorithms
Parameter estimation
particle information interaction
Performance tests
Population density
Search algorithms
Swarm intelligence
swarm intelligence algorithm
title Improved Gravitational Search Algorithm Based on Adaptive Strategies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Gravitational%20Search%20Algorithm%20Based%20on%20Adaptive%20Strategies&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Yang,%20Zhonghua&rft.date=2022-12-14&rft.volume=24&rft.issue=12&rft.spage=1826&rft.pages=1826-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24121826&rft_dat=%3Cgale_doaj_%3EA745709835%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-c4e02188f18d15a7db1a13e3446d3c7d1e6f69598d7b3807842a3c41aa693d623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756687765&rft_id=info:pmid/36554230&rft_galeid=A745709835&rfr_iscdi=true