Loading…
Resistance screening and in-vitro efficacy of fungicides for the management of dry root rot of chickpea caused by Rhizoctonia bataticola
Dry root rot caused by Rhizoctonia bataticola (Taub.) Butler is an emerging threat for chickpea production. It is among one of the chief and common soil borne diseases of chickpea. The present investigation was conducted firstly to identify the resistant source for dry root rot in chickpea and secon...
Saved in:
Published in: | Environment conservation journal 2022-12, Vol.23 (3), p.8-13 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dry root rot caused by Rhizoctonia bataticola (Taub.) Butler is an emerging threat for chickpea production. It is among one of the chief and common soil borne diseases of chickpea. The present investigation was conducted firstly to identify the resistant source for dry root rot in chickpea and secondly to evaluate the efficacy of different fungicides in inhibiting the growth of R. bataticola under in vitro conditions. Screening of a set of 50 chickpea entries resulted in identification of three entries namely ICCV 191317, ICCV 191306, and Ujjain 21 as moderately resistant to dry root rot of chickpea. No entry could be identified as completely resistant for dry root rot in chickpea. Further, among the different fungicides tested, pyraclostrobin alone and in combination of Thiophanate methyl completely checked the growth of R. bataticola at 100 ppm concentration under in vitro conditions. However, another combination product of fungicides namely carboxin + thiram and carbendazim + mancozeb also showed complete inhibition in growth of test pathogen at higher concentration of fungicides i.e. at 300 ppm concentration.The identified moderately resistant genotypes could be a useful resource for development of resistant varieties in chickpea for dry root rot using molecular breeding approaches. |
---|---|
ISSN: | 0972-3099 2278-5124 |
DOI: | 10.36953/ECJ.11702317 |