Loading…
Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying
The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding...
Saved in:
Published in: | Ingeniería e investigación 2016, Vol.36 (3), p.102-109 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523 |
---|---|
cites | cdi_FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523 |
container_end_page | 109 |
container_issue | 3 |
container_start_page | 102 |
container_title | Ingeniería e investigación |
container_volume | 36 |
creator | Rojas, Paula Martínez, Carola Aguilar, Claudio Briones, Francisco Zelaya, María Eugenia Guzman, Danny |
description | The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni), and different binary alloys (Cu-Ni and Cu-Zr), under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD) patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H) method and then compared with the transmission electron microscope (TEM) images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys). In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glassforming ability. |
doi_str_mv | 10.15446/ing.investig.v36n3.54224 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aa623bd66daf4ded879dbabe1a4030ac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0120_56092016000300014</scielo_id><doaj_id>oai_doaj_org_article_aa623bd66daf4ded879dbabe1a4030ac</doaj_id><sourcerecordid>4297306611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523</originalsourceid><addsrcrecordid>eNpdkl2LEzEUhoMoWOr-h4g3XuzUfE0mBW-W4sfCgqDrdTiTOdOmTJMxmS7UP-DfNv2wqDcJObzPm5y8h5DXnC14rZR-58N64cMT5smvF09SB7molRDqGZmV1VSmEfI5mTEuWFVrtnxJbnL2LVO6YbxhakZ-rTaQwE2Y_E-YfAw09nTcQEbqNhDWmGm3T-Ue2kObvLtqXBxHTBSGIR7yLXXpkKdy8AEphI6GGKq_ard0TDhCwo62B7rDo3cxG858sX9FXvQwZLy57HPy_eOHx9Xn6uHLp_vV3UPlasmnqjeGC3AMa8alNrKH0omWrOeqZh1z3OFSAzIDTja61b0wrpOiqLXSy1rIObk_-3YRtnZMfgfpYCN4eyrEtLaQJu8GtABayLbTuoNeddiZZtm10CIHxSQrF8zJ-4uXhyHg9K_dpbYPPvm4BYvZ3n19ZIxxZqTgdcEXZzw7j0O027hPofRuvx3zsse8RHl3IeSRUgV4ewbGFH_sS-h257PDYYCAcZ8tN0YVUtRNkb75T3p156bWRjWi_N6cLM8ql2LOCftrB5zZ04TZEo39M2H2NGH2NGHyN329yNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856847268</pqid></control><display><type>article</type><title>Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying</title><source>Publicly Available Content Database</source><creator>Rojas, Paula ; Martínez, Carola ; Aguilar, Claudio ; Briones, Francisco ; Zelaya, María Eugenia ; Guzman, Danny</creator><creatorcontrib>Rojas, Paula ; Martínez, Carola ; Aguilar, Claudio ; Briones, Francisco ; Zelaya, María Eugenia ; Guzman, Danny</creatorcontrib><description>The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni), and different binary alloys (Cu-Ni and Cu-Zr), under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD) patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H) method and then compared with the transmission electron microscope (TEM) images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys). In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glassforming ability.</description><identifier>ISSN: 0120-5609</identifier><identifier>ISSN: 2248-8723</identifier><identifier>EISSN: 2248-8723</identifier><identifier>DOI: 10.15446/ing.investig.v36n3.54224</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>Aleaciones base cobre ; aleado mecánico ; ALLOYING ; Alloys ; Binary systems ; Casting ; Copper ; COPPER ALLOYS (40 TO 99.3 CU) ; Copper base alloys ; Copper based alloys ; difracción de rayos X ; ENGINEERING, MULTIDISCIPLINARY ; FABRICATION ; Ingeniería de Materiales ; Materials engineering ; MATHEMATICAL ANALYSIS ; Mechanical alloying ; microscopía electrónica de transmisión ; Nickel ; PHASE TRANSFORMATIONS ; Phase transitions ; PHASES ; SOLID SOLUTIONS ; Transmission electron microscopy ; X ray diffraction ; Zirconium</subject><ispartof>Ingeniería e investigación, 2016, Vol.36 (3), p.102-109</ispartof><rights>Copyright Universidad Nacional de Colombia 2016</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523</citedby><cites>FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1856847268?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4009,25732,27902,27903,27904,36991,36992,44569</link.rule.ids></links><search><creatorcontrib>Rojas, Paula</creatorcontrib><creatorcontrib>Martínez, Carola</creatorcontrib><creatorcontrib>Aguilar, Claudio</creatorcontrib><creatorcontrib>Briones, Francisco</creatorcontrib><creatorcontrib>Zelaya, María Eugenia</creatorcontrib><creatorcontrib>Guzman, Danny</creatorcontrib><title>Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying</title><title>Ingeniería e investigación</title><addtitle>Ing. Investig</addtitle><description>The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni), and different binary alloys (Cu-Ni and Cu-Zr), under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD) patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H) method and then compared with the transmission electron microscope (TEM) images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys). In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glassforming ability.</description><subject>Aleaciones base cobre</subject><subject>aleado mecánico</subject><subject>ALLOYING</subject><subject>Alloys</subject><subject>Binary systems</subject><subject>Casting</subject><subject>Copper</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>Copper base alloys</subject><subject>Copper based alloys</subject><subject>difracción de rayos X</subject><subject>ENGINEERING, MULTIDISCIPLINARY</subject><subject>FABRICATION</subject><subject>Ingeniería de Materiales</subject><subject>Materials engineering</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>Mechanical alloying</subject><subject>microscopía electrónica de transmisión</subject><subject>Nickel</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Phase transitions</subject><subject>PHASES</subject><subject>SOLID SOLUTIONS</subject><subject>Transmission electron microscopy</subject><subject>X ray diffraction</subject><subject>Zirconium</subject><issn>0120-5609</issn><issn>2248-8723</issn><issn>2248-8723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl2LEzEUhoMoWOr-h4g3XuzUfE0mBW-W4sfCgqDrdTiTOdOmTJMxmS7UP-DfNv2wqDcJObzPm5y8h5DXnC14rZR-58N64cMT5smvF09SB7molRDqGZmV1VSmEfI5mTEuWFVrtnxJbnL2LVO6YbxhakZ-rTaQwE2Y_E-YfAw09nTcQEbqNhDWmGm3T-Ue2kObvLtqXBxHTBSGIR7yLXXpkKdy8AEphI6GGKq_ard0TDhCwo62B7rDo3cxG858sX9FXvQwZLy57HPy_eOHx9Xn6uHLp_vV3UPlasmnqjeGC3AMa8alNrKH0omWrOeqZh1z3OFSAzIDTja61b0wrpOiqLXSy1rIObk_-3YRtnZMfgfpYCN4eyrEtLaQJu8GtABayLbTuoNeddiZZtm10CIHxSQrF8zJ-4uXhyHg9K_dpbYPPvm4BYvZ3n19ZIxxZqTgdcEXZzw7j0O027hPofRuvx3zsse8RHl3IeSRUgV4ewbGFH_sS-h257PDYYCAcZ8tN0YVUtRNkb75T3p156bWRjWi_N6cLM8ql2LOCftrB5zZ04TZEo39M2H2NGH2NGHyN329yNg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Rojas, Paula</creator><creator>Martínez, Carola</creator><creator>Aguilar, Claudio</creator><creator>Briones, Francisco</creator><creator>Zelaya, María Eugenia</creator><creator>Guzman, Danny</creator><general>Universidad Nacional de Colombia</general><general>Facultad de Ingeniería, Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>8BQ</scope><scope>H8G</scope><scope>JG9</scope><scope>GPN</scope><scope>AGMXS</scope><scope>FKZ</scope><scope>DOA</scope></search><sort><creationdate>2016</creationdate><title>Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying</title><author>Rojas, Paula ; Martínez, Carola ; Aguilar, Claudio ; Briones, Francisco ; Zelaya, María Eugenia ; Guzman, Danny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aleaciones base cobre</topic><topic>aleado mecánico</topic><topic>ALLOYING</topic><topic>Alloys</topic><topic>Binary systems</topic><topic>Casting</topic><topic>Copper</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>Copper base alloys</topic><topic>Copper based alloys</topic><topic>difracción de rayos X</topic><topic>ENGINEERING, MULTIDISCIPLINARY</topic><topic>FABRICATION</topic><topic>Ingeniería de Materiales</topic><topic>Materials engineering</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>Mechanical alloying</topic><topic>microscopía electrónica de transmisión</topic><topic>Nickel</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Phase transitions</topic><topic>PHASES</topic><topic>SOLID SOLUTIONS</topic><topic>Transmission electron microscopy</topic><topic>X ray diffraction</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas, Paula</creatorcontrib><creatorcontrib>Martínez, Carola</creatorcontrib><creatorcontrib>Aguilar, Claudio</creatorcontrib><creatorcontrib>Briones, Francisco</creatorcontrib><creatorcontrib>Zelaya, María Eugenia</creatorcontrib><creatorcontrib>Guzman, Danny</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>METADEX</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>SciELO</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><collection>Directory of Open Access Journals</collection><jtitle>Ingeniería e investigación</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas, Paula</au><au>Martínez, Carola</au><au>Aguilar, Claudio</au><au>Briones, Francisco</au><au>Zelaya, María Eugenia</au><au>Guzman, Danny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying</atitle><jtitle>Ingeniería e investigación</jtitle><addtitle>Ing. Investig</addtitle><date>2016</date><risdate>2016</risdate><volume>36</volume><issue>3</issue><spage>102</spage><epage>109</epage><pages>102-109</pages><issn>0120-5609</issn><issn>2248-8723</issn><eissn>2248-8723</eissn><abstract>The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni), and different binary alloys (Cu-Ni and Cu-Zr), under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD) patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H) method and then compared with the transmission electron microscope (TEM) images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys). In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glassforming ability.</abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/ing.investig.v36n3.54224</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0120-5609 |
ispartof | Ingeniería e investigación, 2016, Vol.36 (3), p.102-109 |
issn | 0120-5609 2248-8723 2248-8723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_aa623bd66daf4ded879dbabe1a4030ac |
source | Publicly Available Content Database |
subjects | Aleaciones base cobre aleado mecánico ALLOYING Alloys Binary systems Casting Copper COPPER ALLOYS (40 TO 99.3 CU) Copper base alloys Copper based alloys difracción de rayos X ENGINEERING, MULTIDISCIPLINARY FABRICATION Ingeniería de Materiales Materials engineering MATHEMATICAL ANALYSIS Mechanical alloying microscopía electrónica de transmisión Nickel PHASE TRANSFORMATIONS Phase transitions PHASES SOLID SOLUTIONS Transmission electron microscopy X ray diffraction Zirconium |
title | Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20phase%20changes%20during%20fabrication%20of%20copper%20alloys,%20crystalline%20and%20non-crystalline,%20prepared%20by%20mechanical%20alloying&rft.jtitle=Ingenier%C3%ADa%20e%20investigaci%C3%B3n&rft.au=Rojas,%20Paula&rft.date=2016&rft.volume=36&rft.issue=3&rft.spage=102&rft.epage=109&rft.pages=102-109&rft.issn=0120-5609&rft.eissn=2248-8723&rft_id=info:doi/10.15446/ing.investig.v36n3.54224&rft_dat=%3Cproquest_doaj_%3E4297306611%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1856847268&rft_id=info:pmid/&rft_scielo_id=S0120_56092016000300014&rfr_iscdi=true |