Loading…

Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying

The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding...

Full description

Saved in:
Bibliographic Details
Published in:Ingeniería e investigación 2016, Vol.36 (3), p.102-109
Main Authors: Rojas, Paula, Martínez, Carola, Aguilar, Claudio, Briones, Francisco, Zelaya, María Eugenia, Guzman, Danny
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523
cites cdi_FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523
container_end_page 109
container_issue 3
container_start_page 102
container_title Ingeniería e investigación
container_volume 36
creator Rojas, Paula
Martínez, Carola
Aguilar, Claudio
Briones, Francisco
Zelaya, María Eugenia
Guzman, Danny
description The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni), and different binary alloys (Cu-Ni and Cu-Zr), under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD) patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H) method and then compared with the transmission electron microscope (TEM) images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys). In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glassforming ability.
doi_str_mv 10.15446/ing.investig.v36n3.54224
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aa623bd66daf4ded879dbabe1a4030ac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0120_56092016000300014</scielo_id><doaj_id>oai_doaj_org_article_aa623bd66daf4ded879dbabe1a4030ac</doaj_id><sourcerecordid>4297306611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523</originalsourceid><addsrcrecordid>eNpdkl2LEzEUhoMoWOr-h4g3XuzUfE0mBW-W4sfCgqDrdTiTOdOmTJMxmS7UP-DfNv2wqDcJObzPm5y8h5DXnC14rZR-58N64cMT5smvF09SB7molRDqGZmV1VSmEfI5mTEuWFVrtnxJbnL2LVO6YbxhakZ-rTaQwE2Y_E-YfAw09nTcQEbqNhDWmGm3T-Ue2kObvLtqXBxHTBSGIR7yLXXpkKdy8AEphI6GGKq_ard0TDhCwo62B7rDo3cxG858sX9FXvQwZLy57HPy_eOHx9Xn6uHLp_vV3UPlasmnqjeGC3AMa8alNrKH0omWrOeqZh1z3OFSAzIDTja61b0wrpOiqLXSy1rIObk_-3YRtnZMfgfpYCN4eyrEtLaQJu8GtABayLbTuoNeddiZZtm10CIHxSQrF8zJ-4uXhyHg9K_dpbYPPvm4BYvZ3n19ZIxxZqTgdcEXZzw7j0O027hPofRuvx3zsse8RHl3IeSRUgV4ewbGFH_sS-h257PDYYCAcZ8tN0YVUtRNkb75T3p156bWRjWi_N6cLM8ql2LOCftrB5zZ04TZEo39M2H2NGH2NGHyN329yNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856847268</pqid></control><display><type>article</type><title>Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying</title><source>Publicly Available Content Database</source><creator>Rojas, Paula ; Martínez, Carola ; Aguilar, Claudio ; Briones, Francisco ; Zelaya, María Eugenia ; Guzman, Danny</creator><creatorcontrib>Rojas, Paula ; Martínez, Carola ; Aguilar, Claudio ; Briones, Francisco ; Zelaya, María Eugenia ; Guzman, Danny</creatorcontrib><description>The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni), and different binary alloys (Cu-Ni and Cu-Zr), under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD) patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H) method and then compared with the transmission electron microscope (TEM) images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys). In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glassforming ability.</description><identifier>ISSN: 0120-5609</identifier><identifier>ISSN: 2248-8723</identifier><identifier>EISSN: 2248-8723</identifier><identifier>DOI: 10.15446/ing.investig.v36n3.54224</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>Aleaciones base cobre ; aleado mecánico ; ALLOYING ; Alloys ; Binary systems ; Casting ; Copper ; COPPER ALLOYS (40 TO 99.3 CU) ; Copper base alloys ; Copper based alloys ; difracción de rayos X ; ENGINEERING, MULTIDISCIPLINARY ; FABRICATION ; Ingeniería de Materiales ; Materials engineering ; MATHEMATICAL ANALYSIS ; Mechanical alloying ; microscopía electrónica de transmisión ; Nickel ; PHASE TRANSFORMATIONS ; Phase transitions ; PHASES ; SOLID SOLUTIONS ; Transmission electron microscopy ; X ray diffraction ; Zirconium</subject><ispartof>Ingeniería e investigación, 2016, Vol.36 (3), p.102-109</ispartof><rights>Copyright Universidad Nacional de Colombia 2016</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523</citedby><cites>FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1856847268?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4009,25732,27902,27903,27904,36991,36992,44569</link.rule.ids></links><search><creatorcontrib>Rojas, Paula</creatorcontrib><creatorcontrib>Martínez, Carola</creatorcontrib><creatorcontrib>Aguilar, Claudio</creatorcontrib><creatorcontrib>Briones, Francisco</creatorcontrib><creatorcontrib>Zelaya, María Eugenia</creatorcontrib><creatorcontrib>Guzman, Danny</creatorcontrib><title>Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying</title><title>Ingeniería e investigación</title><addtitle>Ing. Investig</addtitle><description>The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni), and different binary alloys (Cu-Ni and Cu-Zr), under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD) patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H) method and then compared with the transmission electron microscope (TEM) images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys). In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glassforming ability.</description><subject>Aleaciones base cobre</subject><subject>aleado mecánico</subject><subject>ALLOYING</subject><subject>Alloys</subject><subject>Binary systems</subject><subject>Casting</subject><subject>Copper</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>Copper base alloys</subject><subject>Copper based alloys</subject><subject>difracción de rayos X</subject><subject>ENGINEERING, MULTIDISCIPLINARY</subject><subject>FABRICATION</subject><subject>Ingeniería de Materiales</subject><subject>Materials engineering</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>Mechanical alloying</subject><subject>microscopía electrónica de transmisión</subject><subject>Nickel</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Phase transitions</subject><subject>PHASES</subject><subject>SOLID SOLUTIONS</subject><subject>Transmission electron microscopy</subject><subject>X ray diffraction</subject><subject>Zirconium</subject><issn>0120-5609</issn><issn>2248-8723</issn><issn>2248-8723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl2LEzEUhoMoWOr-h4g3XuzUfE0mBW-W4sfCgqDrdTiTOdOmTJMxmS7UP-DfNv2wqDcJObzPm5y8h5DXnC14rZR-58N64cMT5smvF09SB7molRDqGZmV1VSmEfI5mTEuWFVrtnxJbnL2LVO6YbxhakZ-rTaQwE2Y_E-YfAw09nTcQEbqNhDWmGm3T-Ue2kObvLtqXBxHTBSGIR7yLXXpkKdy8AEphI6GGKq_ard0TDhCwo62B7rDo3cxG858sX9FXvQwZLy57HPy_eOHx9Xn6uHLp_vV3UPlasmnqjeGC3AMa8alNrKH0omWrOeqZh1z3OFSAzIDTja61b0wrpOiqLXSy1rIObk_-3YRtnZMfgfpYCN4eyrEtLaQJu8GtABayLbTuoNeddiZZtm10CIHxSQrF8zJ-4uXhyHg9K_dpbYPPvm4BYvZ3n19ZIxxZqTgdcEXZzw7j0O027hPofRuvx3zsse8RHl3IeSRUgV4ewbGFH_sS-h257PDYYCAcZ8tN0YVUtRNkb75T3p156bWRjWi_N6cLM8ql2LOCftrB5zZ04TZEo39M2H2NGH2NGHyN329yNg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Rojas, Paula</creator><creator>Martínez, Carola</creator><creator>Aguilar, Claudio</creator><creator>Briones, Francisco</creator><creator>Zelaya, María Eugenia</creator><creator>Guzman, Danny</creator><general>Universidad Nacional de Colombia</general><general>Facultad de Ingeniería, Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>8BQ</scope><scope>H8G</scope><scope>JG9</scope><scope>GPN</scope><scope>AGMXS</scope><scope>FKZ</scope><scope>DOA</scope></search><sort><creationdate>2016</creationdate><title>Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying</title><author>Rojas, Paula ; Martínez, Carola ; Aguilar, Claudio ; Briones, Francisco ; Zelaya, María Eugenia ; Guzman, Danny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aleaciones base cobre</topic><topic>aleado mecánico</topic><topic>ALLOYING</topic><topic>Alloys</topic><topic>Binary systems</topic><topic>Casting</topic><topic>Copper</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>Copper base alloys</topic><topic>Copper based alloys</topic><topic>difracción de rayos X</topic><topic>ENGINEERING, MULTIDISCIPLINARY</topic><topic>FABRICATION</topic><topic>Ingeniería de Materiales</topic><topic>Materials engineering</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>Mechanical alloying</topic><topic>microscopía electrónica de transmisión</topic><topic>Nickel</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Phase transitions</topic><topic>PHASES</topic><topic>SOLID SOLUTIONS</topic><topic>Transmission electron microscopy</topic><topic>X ray diffraction</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas, Paula</creatorcontrib><creatorcontrib>Martínez, Carola</creatorcontrib><creatorcontrib>Aguilar, Claudio</creatorcontrib><creatorcontrib>Briones, Francisco</creatorcontrib><creatorcontrib>Zelaya, María Eugenia</creatorcontrib><creatorcontrib>Guzman, Danny</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>METADEX</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>SciELO</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><collection>Directory of Open Access Journals</collection><jtitle>Ingeniería e investigación</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas, Paula</au><au>Martínez, Carola</au><au>Aguilar, Claudio</au><au>Briones, Francisco</au><au>Zelaya, María Eugenia</au><au>Guzman, Danny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying</atitle><jtitle>Ingeniería e investigación</jtitle><addtitle>Ing. Investig</addtitle><date>2016</date><risdate>2016</risdate><volume>36</volume><issue>3</issue><spage>102</spage><epage>109</epage><pages>102-109</pages><issn>0120-5609</issn><issn>2248-8723</issn><eissn>2248-8723</eissn><abstract>The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni), and different binary alloys (Cu-Ni and Cu-Zr), under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD) patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H) method and then compared with the transmission electron microscope (TEM) images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys). In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glassforming ability.</abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/ing.investig.v36n3.54224</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0120-5609
ispartof Ingeniería e investigación, 2016, Vol.36 (3), p.102-109
issn 0120-5609
2248-8723
2248-8723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_aa623bd66daf4ded879dbabe1a4030ac
source Publicly Available Content Database
subjects Aleaciones base cobre
aleado mecánico
ALLOYING
Alloys
Binary systems
Casting
Copper
COPPER ALLOYS (40 TO 99.3 CU)
Copper base alloys
Copper based alloys
difracción de rayos X
ENGINEERING, MULTIDISCIPLINARY
FABRICATION
Ingeniería de Materiales
Materials engineering
MATHEMATICAL ANALYSIS
Mechanical alloying
microscopía electrónica de transmisión
Nickel
PHASE TRANSFORMATIONS
Phase transitions
PHASES
SOLID SOLUTIONS
Transmission electron microscopy
X ray diffraction
Zirconium
title Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20phase%20changes%20during%20fabrication%20of%20copper%20alloys,%20crystalline%20and%20non-crystalline,%20prepared%20by%20mechanical%20alloying&rft.jtitle=Ingenier%C3%ADa%20e%20investigaci%C3%B3n&rft.au=Rojas,%20Paula&rft.date=2016&rft.volume=36&rft.issue=3&rft.spage=102&rft.epage=109&rft.pages=102-109&rft.issn=0120-5609&rft.eissn=2248-8723&rft_id=info:doi/10.15446/ing.investig.v36n3.54224&rft_dat=%3Cproquest_doaj_%3E4297306611%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-f8812ac0e5013683fa670630f1450d0c1ce96ae08ac376b6f28cd325016469523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1856847268&rft_id=info:pmid/&rft_scielo_id=S0120_56092016000300014&rfr_iscdi=true