Loading…

Data‐driven flight time prediction for arrival aircraft within the terminal area

Predicting the arrival aircraft's flight time plays a critical role in effectively optimizing and scheduling spatial‐temporal resources in the terminal airspace. This paper focuses on a data‐driven method for predicting the arrival flight time. First, based on the existing research, a feature s...

Full description

Saved in:
Bibliographic Details
Published in:IET intelligent transport systems 2022-02, Vol.16 (2), p.263-275
Main Authors: Zhang, Junfeng, Peng, Zihan, Yang, Chunwei, Wang, Bin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4142-83a3dd7b787f0951d7c85a6d71b42c6a5d2eb3c6a304219e6501359bab4f6e953
cites cdi_FETCH-LOGICAL-c4142-83a3dd7b787f0951d7c85a6d71b42c6a5d2eb3c6a304219e6501359bab4f6e953
container_end_page 275
container_issue 2
container_start_page 263
container_title IET intelligent transport systems
container_volume 16
creator Zhang, Junfeng
Peng, Zihan
Yang, Chunwei
Wang, Bin
description Predicting the arrival aircraft's flight time plays a critical role in effectively optimizing and scheduling spatial‐temporal resources in the terminal airspace. This paper focuses on a data‐driven method for predicting the arrival flight time. First, based on the existing research, a feature set is constructed from four aspects: initial state, arrival pressure, sequencing pressure, and wind information, which are believed to affect arrival flight time significantly. Second, eight widely used models are developed to predict flight time, including linear regression models, nonlinear regression models, and tree‐based ensemble models. Furthermore, the stacking technique is adopted to improve the prediction performance. Finally, take Guangzhou Baiyun International Airport as a study case to verify the proposed method's effectiveness. The results indicate that the arrival pressure (describing the arrival traffic demand) and the sequencing pressure (sketching the arrival traffic distribution) could effectively improve the prediction accuracy. The mean absolute percentage error of the predicted flight time via ATAGA and IGONO can be increased by 1%. Besides, the proposed method of extracting wind data could also improve the prediction performance. The mean absolute error of the predicted flight time via GYA can be reduced by 4.85 s.
doi_str_mv 10.1049/itr2.12142
format article
fullrecord <record><control><sourceid>wiley_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aa6263da90b540cea556f63ecadc0258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aa6263da90b540cea556f63ecadc0258</doaj_id><sourcerecordid>ITR212142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4142-83a3dd7b787f0951d7c85a6d71b42c6a5d2eb3c6a304219e6501359bab4f6e953</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFY3PsGshdT5yUySpdS_QkEoFdwNNzM37ZS0KZPB0p2P4DP6JKaNdOnqHs499-NyCLnlbMRZWtz7GMSIC56KMzLgmeJJobL8_KT1xyW5atsVY0oLwQdk9ggRfr6-XfCfuKFV7RfLSKNfI90GdN5G33R2EyiELgI1BR9sgCrSnY9Lv6FxiTRiWPvNYRkQrslFBXWLN39zSN6fn-bj12T69jIZP0wTm3b_JbkE6VxWZnlWsUJxl9lcgXYZL1NhNSgnsJSdkCwVvECtGJeqKKFMK42FkkMy6bmugZXZBr-GsDcNeHM0mrAwEKK3NRoALbR0ULBSpcwiKKUrLdGCs0yovGPd9SwbmrYNWJ14nJlDs-bQrDk224V5H975Gvf_JM1kPhP9zS8BcHya</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data‐driven flight time prediction for arrival aircraft within the terminal area</title><source>Wiley Online Library Open Access</source><creator>Zhang, Junfeng ; Peng, Zihan ; Yang, Chunwei ; Wang, Bin</creator><creatorcontrib>Zhang, Junfeng ; Peng, Zihan ; Yang, Chunwei ; Wang, Bin</creatorcontrib><description>Predicting the arrival aircraft's flight time plays a critical role in effectively optimizing and scheduling spatial‐temporal resources in the terminal airspace. This paper focuses on a data‐driven method for predicting the arrival flight time. First, based on the existing research, a feature set is constructed from four aspects: initial state, arrival pressure, sequencing pressure, and wind information, which are believed to affect arrival flight time significantly. Second, eight widely used models are developed to predict flight time, including linear regression models, nonlinear regression models, and tree‐based ensemble models. Furthermore, the stacking technique is adopted to improve the prediction performance. Finally, take Guangzhou Baiyun International Airport as a study case to verify the proposed method's effectiveness. The results indicate that the arrival pressure (describing the arrival traffic demand) and the sequencing pressure (sketching the arrival traffic distribution) could effectively improve the prediction accuracy. The mean absolute percentage error of the predicted flight time via ATAGA and IGONO can be increased by 1%. Besides, the proposed method of extracting wind data could also improve the prediction performance. The mean absolute error of the predicted flight time via GYA can be reduced by 4.85 s.</description><identifier>ISSN: 1751-956X</identifier><identifier>EISSN: 1751-9578</identifier><identifier>DOI: 10.1049/itr2.12142</identifier><language>eng</language><publisher>Wiley</publisher><ispartof>IET intelligent transport systems, 2022-02, Vol.16 (2), p.263-275</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4142-83a3dd7b787f0951d7c85a6d71b42c6a5d2eb3c6a304219e6501359bab4f6e953</citedby><cites>FETCH-LOGICAL-c4142-83a3dd7b787f0951d7c85a6d71b42c6a5d2eb3c6a304219e6501359bab4f6e953</cites><orcidid>0000-0003-2384-3476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fitr2.12142$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fitr2.12142$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11560,27922,27923,46050,46474</link.rule.ids></links><search><creatorcontrib>Zhang, Junfeng</creatorcontrib><creatorcontrib>Peng, Zihan</creatorcontrib><creatorcontrib>Yang, Chunwei</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><title>Data‐driven flight time prediction for arrival aircraft within the terminal area</title><title>IET intelligent transport systems</title><description>Predicting the arrival aircraft's flight time plays a critical role in effectively optimizing and scheduling spatial‐temporal resources in the terminal airspace. This paper focuses on a data‐driven method for predicting the arrival flight time. First, based on the existing research, a feature set is constructed from four aspects: initial state, arrival pressure, sequencing pressure, and wind information, which are believed to affect arrival flight time significantly. Second, eight widely used models are developed to predict flight time, including linear regression models, nonlinear regression models, and tree‐based ensemble models. Furthermore, the stacking technique is adopted to improve the prediction performance. Finally, take Guangzhou Baiyun International Airport as a study case to verify the proposed method's effectiveness. The results indicate that the arrival pressure (describing the arrival traffic demand) and the sequencing pressure (sketching the arrival traffic distribution) could effectively improve the prediction accuracy. The mean absolute percentage error of the predicted flight time via ATAGA and IGONO can be increased by 1%. Besides, the proposed method of extracting wind data could also improve the prediction performance. The mean absolute error of the predicted flight time via GYA can be reduced by 4.85 s.</description><issn>1751-956X</issn><issn>1751-9578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kM1Kw0AUhQdRsFY3PsGshdT5yUySpdS_QkEoFdwNNzM37ZS0KZPB0p2P4DP6JKaNdOnqHs499-NyCLnlbMRZWtz7GMSIC56KMzLgmeJJobL8_KT1xyW5atsVY0oLwQdk9ggRfr6-XfCfuKFV7RfLSKNfI90GdN5G33R2EyiELgI1BR9sgCrSnY9Lv6FxiTRiWPvNYRkQrslFBXWLN39zSN6fn-bj12T69jIZP0wTm3b_JbkE6VxWZnlWsUJxl9lcgXYZL1NhNSgnsJSdkCwVvECtGJeqKKFMK42FkkMy6bmugZXZBr-GsDcNeHM0mrAwEKK3NRoALbR0ULBSpcwiKKUrLdGCs0yovGPd9SwbmrYNWJ14nJlDs-bQrDk224V5H975Gvf_JM1kPhP9zS8BcHya</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Zhang, Junfeng</creator><creator>Peng, Zihan</creator><creator>Yang, Chunwei</creator><creator>Wang, Bin</creator><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2384-3476</orcidid></search><sort><creationdate>202202</creationdate><title>Data‐driven flight time prediction for arrival aircraft within the terminal area</title><author>Zhang, Junfeng ; Peng, Zihan ; Yang, Chunwei ; Wang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4142-83a3dd7b787f0951d7c85a6d71b42c6a5d2eb3c6a304219e6501359bab4f6e953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Junfeng</creatorcontrib><creatorcontrib>Peng, Zihan</creatorcontrib><creatorcontrib>Yang, Chunwei</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IET intelligent transport systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Junfeng</au><au>Peng, Zihan</au><au>Yang, Chunwei</au><au>Wang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data‐driven flight time prediction for arrival aircraft within the terminal area</atitle><jtitle>IET intelligent transport systems</jtitle><date>2022-02</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>263</spage><epage>275</epage><pages>263-275</pages><issn>1751-956X</issn><eissn>1751-9578</eissn><abstract>Predicting the arrival aircraft's flight time plays a critical role in effectively optimizing and scheduling spatial‐temporal resources in the terminal airspace. This paper focuses on a data‐driven method for predicting the arrival flight time. First, based on the existing research, a feature set is constructed from four aspects: initial state, arrival pressure, sequencing pressure, and wind information, which are believed to affect arrival flight time significantly. Second, eight widely used models are developed to predict flight time, including linear regression models, nonlinear regression models, and tree‐based ensemble models. Furthermore, the stacking technique is adopted to improve the prediction performance. Finally, take Guangzhou Baiyun International Airport as a study case to verify the proposed method's effectiveness. The results indicate that the arrival pressure (describing the arrival traffic demand) and the sequencing pressure (sketching the arrival traffic distribution) could effectively improve the prediction accuracy. The mean absolute percentage error of the predicted flight time via ATAGA and IGONO can be increased by 1%. Besides, the proposed method of extracting wind data could also improve the prediction performance. The mean absolute error of the predicted flight time via GYA can be reduced by 4.85 s.</abstract><pub>Wiley</pub><doi>10.1049/itr2.12142</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2384-3476</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-956X
ispartof IET intelligent transport systems, 2022-02, Vol.16 (2), p.263-275
issn 1751-956X
1751-9578
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_aa6263da90b540cea556f63ecadc0258
source Wiley Online Library Open Access
title Data‐driven flight time prediction for arrival aircraft within the terminal area
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%E2%80%90driven%20flight%20time%20prediction%20for%20arrival%20aircraft%20within%20the%20terminal%20area&rft.jtitle=IET%20intelligent%20transport%20systems&rft.au=Zhang,%20Junfeng&rft.date=2022-02&rft.volume=16&rft.issue=2&rft.spage=263&rft.epage=275&rft.pages=263-275&rft.issn=1751-956X&rft.eissn=1751-9578&rft_id=info:doi/10.1049/itr2.12142&rft_dat=%3Cwiley_doaj_%3EITR212142%3C/wiley_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4142-83a3dd7b787f0951d7c85a6d71b42c6a5d2eb3c6a304219e6501359bab4f6e953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true