Loading…

Effect of Support Functionalization on Catalytic Direct Hydrogenation and Catalytic Transfer Hydrogenation of Muconic Acid to Adipic Acid

The liquid-phase hydrogenation of muconic acid (MA) to produce bio-adipic acid (AdA) is a prominent environmentally friendly chemical process, that can be achieved through two distinct methodologies: catalytic direct hydrogenation using molecular hydrogen (H2), or catalytic transfer hydrogenation ut...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2024-07, Vol.14 (7), p.465
Main Authors: Zanella, Elisa, Franchi, Stefano, Jabbarli, Narmin, Barlocco, Ilaria, Stucchi, Marta, Pirola, Carlo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The liquid-phase hydrogenation of muconic acid (MA) to produce bio-adipic acid (AdA) is a prominent environmentally friendly chemical process, that can be achieved through two distinct methodologies: catalytic direct hydrogenation using molecular hydrogen (H2), or catalytic transfer hydrogenation utilizing a hydrogen donor. In this study, both approaches were explored, with formic acid (FA) selected as the hydrogen source for the latter method. Palladium-based catalysts were chosen for these processes. Metal’s nanoparticles (NPs) were supported on high-temperature heat-treated carbon nanofibers (HHT-CNFs) due to their known ability to enhance the stability of this metal catalyst. To assess the impact of support functionalization on catalyst stability, the HHT-CNFs were further functionalized with phosphorus and oxygen to obtain HHT-P and HHT-O, respectively. In the hydrogenation reaction, catalysts supported on functionalized supports exhibited higher catalytic activity and stability compared to Pd/HHT, reaching an AdA yield of about 80% in less than 2 h in batch reactor. The hydrogen-transfer process also yielded promising results, particularly with the 1%Pd/HHT-P catalyst. This work highlights the efficacy of support functionalization in improving catalyst performance, particularly when formic acid is used as a safer and more cost-effective hydrogen donor in the hydrogen-transfer process.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal14070465