Loading…

Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer

Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potenti...

Full description

Saved in:
Bibliographic Details
Published in:Cell & bioscience 2017-11, Vol.7 (1), p.62-62, Article 62
Main Authors: Singh, Davinder, Arora, Rohit, Kaur, Pardeep, Singh, Balbir, Mannan, Rahul, Arora, Saroj
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43
cites cdi_FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43
container_end_page 62
container_issue 1
container_start_page 62
container_title Cell & bioscience
container_volume 7
creator Singh, Davinder
Arora, Rohit
Kaur, Pardeep
Singh, Balbir
Mannan, Rahul
Arora, Saroj
description Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future.
doi_str_mv 10.1186/s13578-017-0190-2
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aaeab174b5fd48bf9aaeef7e08be1c54</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546070073</galeid><doaj_id>oai_doaj_org_article_aaeab174b5fd48bf9aaeef7e08be1c54</doaj_id><sourcerecordid>A546070073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43</originalsourceid><addsrcrecordid>eNptkktr3DAUhU1paUKaH9BNMXTTLpxKtvVwF4UQ-hgIBPpYFnEtXXk0eCxXstOZf1-5k6aZUglhcfWdY3R1suw5JReUSv4m0ooJWRAq0mpIUT7KTktSs6IShD5-sD_JzmPckDTqhhLBnmYnZUOZlA09zb7f3GLA3RgwRueH3Nt8vR_9zkHhBjNr1_aYW9CTDzkMJt_iBK3vnc5HmNY_YR_f5qNP2oWbIHQ4xcVEw6AxPMueWOgjnt99z7JvH95_vfpUXN98XF1dXheaczIV3PDSSNFaKaBkHCpoqwprIhkyaVFza7AWjSRtZURNUbRc1EQbbRg1pamrs2x18DUeNmoMbgthrzw49bvgQ6cgTE73qAAQWirqlllTy9Y2qYBWIJEtUs0Wr3cHr3Fut2g0DlOA_sj0-GRwa9X5W8W4rMqSJINXdwbB_5gxTmrrosa-hwH9HBVtOG_SoDyhL_9BN34OQ2pVokRqBa0r-pfqIF3ADdan_-rFVF2ymhNBiKgSdfEfKk2DW6f9gNal-pHg9ZEgMRPupg7mGNXqy-djlh5YHdJjB7T3_aBELXFUhziqFEe1xFGVSfPiYSPvFX_CV_0CXM_a3g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972561431</pqid></control><display><type>article</type><title>Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Singh, Davinder ; Arora, Rohit ; Kaur, Pardeep ; Singh, Balbir ; Mannan, Rahul ; Arora, Saroj</creator><creatorcontrib>Singh, Davinder ; Arora, Rohit ; Kaur, Pardeep ; Singh, Balbir ; Mannan, Rahul ; Arora, Saroj</creatorcontrib><description>Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future.</description><identifier>ISSN: 2045-3701</identifier><identifier>EISSN: 2045-3701</identifier><identifier>DOI: 10.1186/s13578-017-0190-2</identifier><identifier>PMID: 29158891</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Angiogenesis ; Breast cancer ; Ca2+/calmodulin-dependent protein kinase ; Calcium-binding protein ; Calmodulin ; Cancer therapies ; Cell cycle ; Cell survival ; Dehydrogenases ; Drug discovery ; Energy ; Energy requirements ; Gene expression ; Glucose isomerase ; Glutamine ; Glycolysis ; Health aspects ; Hexokinase ; HIF-1α ; Hsp90 protein ; Hydrocarbons ; Hypoxia ; Hypoxia-inducible factor 1 ; Hypoxia-inducible factors ; Kinases ; L-Lactate dehydrogenase ; Lactic acid ; Medical prognosis ; Metabolic pathways ; Metabolism ; Metastases ; Metastasis ; mTOR signaling pathway ; Neovascularization ; p53 ; Pentose phosphate pathway ; Phosphorylation ; Protein kinase ; Protein kinases ; Proteins ; Review ; Signal transduction ; Stem cells ; Tricarboxylic acid cycle ; Tumor necrosis factor-TNF ; Vascular endothelial growth factor</subject><ispartof>Cell &amp; bioscience, 2017-11, Vol.7 (1), p.62-62, Article 62</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43</citedby><cites>FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1972561431?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29158891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Davinder</creatorcontrib><creatorcontrib>Arora, Rohit</creatorcontrib><creatorcontrib>Kaur, Pardeep</creatorcontrib><creatorcontrib>Singh, Balbir</creatorcontrib><creatorcontrib>Mannan, Rahul</creatorcontrib><creatorcontrib>Arora, Saroj</creatorcontrib><title>Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer</title><title>Cell &amp; bioscience</title><addtitle>Cell Biosci</addtitle><description>Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future.</description><subject>Angiogenesis</subject><subject>Breast cancer</subject><subject>Ca2+/calmodulin-dependent protein kinase</subject><subject>Calcium-binding protein</subject><subject>Calmodulin</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>Cell survival</subject><subject>Dehydrogenases</subject><subject>Drug discovery</subject><subject>Energy</subject><subject>Energy requirements</subject><subject>Gene expression</subject><subject>Glucose isomerase</subject><subject>Glutamine</subject><subject>Glycolysis</subject><subject>Health aspects</subject><subject>Hexokinase</subject><subject>HIF-1α</subject><subject>Hsp90 protein</subject><subject>Hydrocarbons</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-inducible factors</subject><subject>Kinases</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Medical prognosis</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>mTOR signaling pathway</subject><subject>Neovascularization</subject><subject>p53</subject><subject>Pentose phosphate pathway</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>Review</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Tricarboxylic acid cycle</subject><subject>Tumor necrosis factor-TNF</subject><subject>Vascular endothelial growth factor</subject><issn>2045-3701</issn><issn>2045-3701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktr3DAUhU1paUKaH9BNMXTTLpxKtvVwF4UQ-hgIBPpYFnEtXXk0eCxXstOZf1-5k6aZUglhcfWdY3R1suw5JReUSv4m0ooJWRAq0mpIUT7KTktSs6IShD5-sD_JzmPckDTqhhLBnmYnZUOZlA09zb7f3GLA3RgwRueH3Nt8vR_9zkHhBjNr1_aYW9CTDzkMJt_iBK3vnc5HmNY_YR_f5qNP2oWbIHQ4xcVEw6AxPMueWOgjnt99z7JvH95_vfpUXN98XF1dXheaczIV3PDSSNFaKaBkHCpoqwprIhkyaVFza7AWjSRtZURNUbRc1EQbbRg1pamrs2x18DUeNmoMbgthrzw49bvgQ6cgTE73qAAQWirqlllTy9Y2qYBWIJEtUs0Wr3cHr3Fut2g0DlOA_sj0-GRwa9X5W8W4rMqSJINXdwbB_5gxTmrrosa-hwH9HBVtOG_SoDyhL_9BN34OQ2pVokRqBa0r-pfqIF3ADdan_-rFVF2ymhNBiKgSdfEfKk2DW6f9gNal-pHg9ZEgMRPupg7mGNXqy-djlh5YHdJjB7T3_aBELXFUhziqFEe1xFGVSfPiYSPvFX_CV_0CXM_a3g</recordid><startdate>20171113</startdate><enddate>20171113</enddate><creator>Singh, Davinder</creator><creator>Arora, Rohit</creator><creator>Kaur, Pardeep</creator><creator>Singh, Balbir</creator><creator>Mannan, Rahul</creator><creator>Arora, Saroj</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20171113</creationdate><title>Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer</title><author>Singh, Davinder ; Arora, Rohit ; Kaur, Pardeep ; Singh, Balbir ; Mannan, Rahul ; Arora, Saroj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiogenesis</topic><topic>Breast cancer</topic><topic>Ca2+/calmodulin-dependent protein kinase</topic><topic>Calcium-binding protein</topic><topic>Calmodulin</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>Cell survival</topic><topic>Dehydrogenases</topic><topic>Drug discovery</topic><topic>Energy</topic><topic>Energy requirements</topic><topic>Gene expression</topic><topic>Glucose isomerase</topic><topic>Glutamine</topic><topic>Glycolysis</topic><topic>Health aspects</topic><topic>Hexokinase</topic><topic>HIF-1α</topic><topic>Hsp90 protein</topic><topic>Hydrocarbons</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-inducible factors</topic><topic>Kinases</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Medical prognosis</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>mTOR signaling pathway</topic><topic>Neovascularization</topic><topic>p53</topic><topic>Pentose phosphate pathway</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>Review</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Tricarboxylic acid cycle</topic><topic>Tumor necrosis factor-TNF</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Davinder</creatorcontrib><creatorcontrib>Arora, Rohit</creatorcontrib><creatorcontrib>Kaur, Pardeep</creatorcontrib><creatorcontrib>Singh, Balbir</creatorcontrib><creatorcontrib>Mannan, Rahul</creatorcontrib><creatorcontrib>Arora, Saroj</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell &amp; bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Davinder</au><au>Arora, Rohit</au><au>Kaur, Pardeep</au><au>Singh, Balbir</au><au>Mannan, Rahul</au><au>Arora, Saroj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer</atitle><jtitle>Cell &amp; bioscience</jtitle><addtitle>Cell Biosci</addtitle><date>2017-11-13</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>62</spage><epage>62</epage><pages>62-62</pages><artnum>62</artnum><issn>2045-3701</issn><eissn>2045-3701</eissn><abstract>Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>29158891</pmid><doi>10.1186/s13578-017-0190-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-3701
ispartof Cell & bioscience, 2017-11, Vol.7 (1), p.62-62, Article 62
issn 2045-3701
2045-3701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_aaeab174b5fd48bf9aaeef7e08be1c54
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Angiogenesis
Breast cancer
Ca2+/calmodulin-dependent protein kinase
Calcium-binding protein
Calmodulin
Cancer therapies
Cell cycle
Cell survival
Dehydrogenases
Drug discovery
Energy
Energy requirements
Gene expression
Glucose isomerase
Glutamine
Glycolysis
Health aspects
Hexokinase
HIF-1α
Hsp90 protein
Hydrocarbons
Hypoxia
Hypoxia-inducible factor 1
Hypoxia-inducible factors
Kinases
L-Lactate dehydrogenase
Lactic acid
Medical prognosis
Metabolic pathways
Metabolism
Metastases
Metastasis
mTOR signaling pathway
Neovascularization
p53
Pentose phosphate pathway
Phosphorylation
Protein kinase
Protein kinases
Proteins
Review
Signal transduction
Stem cells
Tricarboxylic acid cycle
Tumor necrosis factor-TNF
Vascular endothelial growth factor
title Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20hypoxia-inducible%20factor%20and%20metabolic%20pathways:%20possible%20targets%20of%20cancer&rft.jtitle=Cell%20&%20bioscience&rft.au=Singh,%20Davinder&rft.date=2017-11-13&rft.volume=7&rft.issue=1&rft.spage=62&rft.epage=62&rft.pages=62-62&rft.artnum=62&rft.issn=2045-3701&rft.eissn=2045-3701&rft_id=info:doi/10.1186/s13578-017-0190-2&rft_dat=%3Cgale_doaj_%3EA546070073%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1972561431&rft_id=info:pmid/29158891&rft_galeid=A546070073&rfr_iscdi=true