Loading…
Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer
Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potenti...
Saved in:
Published in: | Cell & bioscience 2017-11, Vol.7 (1), p.62-62, Article 62 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43 |
container_end_page | 62 |
container_issue | 1 |
container_start_page | 62 |
container_title | Cell & bioscience |
container_volume | 7 |
creator | Singh, Davinder Arora, Rohit Kaur, Pardeep Singh, Balbir Mannan, Rahul Arora, Saroj |
description | Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future. |
doi_str_mv | 10.1186/s13578-017-0190-2 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aaeab174b5fd48bf9aaeef7e08be1c54</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546070073</galeid><doaj_id>oai_doaj_org_article_aaeab174b5fd48bf9aaeef7e08be1c54</doaj_id><sourcerecordid>A546070073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43</originalsourceid><addsrcrecordid>eNptkktr3DAUhU1paUKaH9BNMXTTLpxKtvVwF4UQ-hgIBPpYFnEtXXk0eCxXstOZf1-5k6aZUglhcfWdY3R1suw5JReUSv4m0ooJWRAq0mpIUT7KTktSs6IShD5-sD_JzmPckDTqhhLBnmYnZUOZlA09zb7f3GLA3RgwRueH3Nt8vR_9zkHhBjNr1_aYW9CTDzkMJt_iBK3vnc5HmNY_YR_f5qNP2oWbIHQ4xcVEw6AxPMueWOgjnt99z7JvH95_vfpUXN98XF1dXheaczIV3PDSSNFaKaBkHCpoqwprIhkyaVFza7AWjSRtZURNUbRc1EQbbRg1pamrs2x18DUeNmoMbgthrzw49bvgQ6cgTE73qAAQWirqlllTy9Y2qYBWIJEtUs0Wr3cHr3Fut2g0DlOA_sj0-GRwa9X5W8W4rMqSJINXdwbB_5gxTmrrosa-hwH9HBVtOG_SoDyhL_9BN34OQ2pVokRqBa0r-pfqIF3ADdan_-rFVF2ymhNBiKgSdfEfKk2DW6f9gNal-pHg9ZEgMRPupg7mGNXqy-djlh5YHdJjB7T3_aBELXFUhziqFEe1xFGVSfPiYSPvFX_CV_0CXM_a3g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972561431</pqid></control><display><type>article</type><title>Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Singh, Davinder ; Arora, Rohit ; Kaur, Pardeep ; Singh, Balbir ; Mannan, Rahul ; Arora, Saroj</creator><creatorcontrib>Singh, Davinder ; Arora, Rohit ; Kaur, Pardeep ; Singh, Balbir ; Mannan, Rahul ; Arora, Saroj</creatorcontrib><description>Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future.</description><identifier>ISSN: 2045-3701</identifier><identifier>EISSN: 2045-3701</identifier><identifier>DOI: 10.1186/s13578-017-0190-2</identifier><identifier>PMID: 29158891</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Angiogenesis ; Breast cancer ; Ca2+/calmodulin-dependent protein kinase ; Calcium-binding protein ; Calmodulin ; Cancer therapies ; Cell cycle ; Cell survival ; Dehydrogenases ; Drug discovery ; Energy ; Energy requirements ; Gene expression ; Glucose isomerase ; Glutamine ; Glycolysis ; Health aspects ; Hexokinase ; HIF-1α ; Hsp90 protein ; Hydrocarbons ; Hypoxia ; Hypoxia-inducible factor 1 ; Hypoxia-inducible factors ; Kinases ; L-Lactate dehydrogenase ; Lactic acid ; Medical prognosis ; Metabolic pathways ; Metabolism ; Metastases ; Metastasis ; mTOR signaling pathway ; Neovascularization ; p53 ; Pentose phosphate pathway ; Phosphorylation ; Protein kinase ; Protein kinases ; Proteins ; Review ; Signal transduction ; Stem cells ; Tricarboxylic acid cycle ; Tumor necrosis factor-TNF ; Vascular endothelial growth factor</subject><ispartof>Cell & bioscience, 2017-11, Vol.7 (1), p.62-62, Article 62</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43</citedby><cites>FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1972561431?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29158891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Davinder</creatorcontrib><creatorcontrib>Arora, Rohit</creatorcontrib><creatorcontrib>Kaur, Pardeep</creatorcontrib><creatorcontrib>Singh, Balbir</creatorcontrib><creatorcontrib>Mannan, Rahul</creatorcontrib><creatorcontrib>Arora, Saroj</creatorcontrib><title>Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer</title><title>Cell & bioscience</title><addtitle>Cell Biosci</addtitle><description>Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future.</description><subject>Angiogenesis</subject><subject>Breast cancer</subject><subject>Ca2+/calmodulin-dependent protein kinase</subject><subject>Calcium-binding protein</subject><subject>Calmodulin</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>Cell survival</subject><subject>Dehydrogenases</subject><subject>Drug discovery</subject><subject>Energy</subject><subject>Energy requirements</subject><subject>Gene expression</subject><subject>Glucose isomerase</subject><subject>Glutamine</subject><subject>Glycolysis</subject><subject>Health aspects</subject><subject>Hexokinase</subject><subject>HIF-1α</subject><subject>Hsp90 protein</subject><subject>Hydrocarbons</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-inducible factors</subject><subject>Kinases</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Medical prognosis</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>mTOR signaling pathway</subject><subject>Neovascularization</subject><subject>p53</subject><subject>Pentose phosphate pathway</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>Review</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Tricarboxylic acid cycle</subject><subject>Tumor necrosis factor-TNF</subject><subject>Vascular endothelial growth factor</subject><issn>2045-3701</issn><issn>2045-3701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktr3DAUhU1paUKaH9BNMXTTLpxKtvVwF4UQ-hgIBPpYFnEtXXk0eCxXstOZf1-5k6aZUglhcfWdY3R1suw5JReUSv4m0ooJWRAq0mpIUT7KTktSs6IShD5-sD_JzmPckDTqhhLBnmYnZUOZlA09zb7f3GLA3RgwRueH3Nt8vR_9zkHhBjNr1_aYW9CTDzkMJt_iBK3vnc5HmNY_YR_f5qNP2oWbIHQ4xcVEw6AxPMueWOgjnt99z7JvH95_vfpUXN98XF1dXheaczIV3PDSSNFaKaBkHCpoqwprIhkyaVFza7AWjSRtZURNUbRc1EQbbRg1pamrs2x18DUeNmoMbgthrzw49bvgQ6cgTE73qAAQWirqlllTy9Y2qYBWIJEtUs0Wr3cHr3Fut2g0DlOA_sj0-GRwa9X5W8W4rMqSJINXdwbB_5gxTmrrosa-hwH9HBVtOG_SoDyhL_9BN34OQ2pVokRqBa0r-pfqIF3ADdan_-rFVF2ymhNBiKgSdfEfKk2DW6f9gNal-pHg9ZEgMRPupg7mGNXqy-djlh5YHdJjB7T3_aBELXFUhziqFEe1xFGVSfPiYSPvFX_CV_0CXM_a3g</recordid><startdate>20171113</startdate><enddate>20171113</enddate><creator>Singh, Davinder</creator><creator>Arora, Rohit</creator><creator>Kaur, Pardeep</creator><creator>Singh, Balbir</creator><creator>Mannan, Rahul</creator><creator>Arora, Saroj</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20171113</creationdate><title>Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer</title><author>Singh, Davinder ; Arora, Rohit ; Kaur, Pardeep ; Singh, Balbir ; Mannan, Rahul ; Arora, Saroj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiogenesis</topic><topic>Breast cancer</topic><topic>Ca2+/calmodulin-dependent protein kinase</topic><topic>Calcium-binding protein</topic><topic>Calmodulin</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>Cell survival</topic><topic>Dehydrogenases</topic><topic>Drug discovery</topic><topic>Energy</topic><topic>Energy requirements</topic><topic>Gene expression</topic><topic>Glucose isomerase</topic><topic>Glutamine</topic><topic>Glycolysis</topic><topic>Health aspects</topic><topic>Hexokinase</topic><topic>HIF-1α</topic><topic>Hsp90 protein</topic><topic>Hydrocarbons</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-inducible factors</topic><topic>Kinases</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Medical prognosis</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>mTOR signaling pathway</topic><topic>Neovascularization</topic><topic>p53</topic><topic>Pentose phosphate pathway</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>Review</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Tricarboxylic acid cycle</topic><topic>Tumor necrosis factor-TNF</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Davinder</creatorcontrib><creatorcontrib>Arora, Rohit</creatorcontrib><creatorcontrib>Kaur, Pardeep</creatorcontrib><creatorcontrib>Singh, Balbir</creatorcontrib><creatorcontrib>Mannan, Rahul</creatorcontrib><creatorcontrib>Arora, Saroj</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell & bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Davinder</au><au>Arora, Rohit</au><au>Kaur, Pardeep</au><au>Singh, Balbir</au><au>Mannan, Rahul</au><au>Arora, Saroj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer</atitle><jtitle>Cell & bioscience</jtitle><addtitle>Cell Biosci</addtitle><date>2017-11-13</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>62</spage><epage>62</epage><pages>62-62</pages><artnum>62</artnum><issn>2045-3701</issn><eissn>2045-3701</eissn><abstract>Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>29158891</pmid><doi>10.1186/s13578-017-0190-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-3701 |
ispartof | Cell & bioscience, 2017-11, Vol.7 (1), p.62-62, Article 62 |
issn | 2045-3701 2045-3701 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_aaeab174b5fd48bf9aaeef7e08be1c54 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Angiogenesis Breast cancer Ca2+/calmodulin-dependent protein kinase Calcium-binding protein Calmodulin Cancer therapies Cell cycle Cell survival Dehydrogenases Drug discovery Energy Energy requirements Gene expression Glucose isomerase Glutamine Glycolysis Health aspects Hexokinase HIF-1α Hsp90 protein Hydrocarbons Hypoxia Hypoxia-inducible factor 1 Hypoxia-inducible factors Kinases L-Lactate dehydrogenase Lactic acid Medical prognosis Metabolic pathways Metabolism Metastases Metastasis mTOR signaling pathway Neovascularization p53 Pentose phosphate pathway Phosphorylation Protein kinase Protein kinases Proteins Review Signal transduction Stem cells Tricarboxylic acid cycle Tumor necrosis factor-TNF Vascular endothelial growth factor |
title | Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20hypoxia-inducible%20factor%20and%20metabolic%20pathways:%20possible%20targets%20of%20cancer&rft.jtitle=Cell%20&%20bioscience&rft.au=Singh,%20Davinder&rft.date=2017-11-13&rft.volume=7&rft.issue=1&rft.spage=62&rft.epage=62&rft.pages=62-62&rft.artnum=62&rft.issn=2045-3701&rft.eissn=2045-3701&rft_id=info:doi/10.1186/s13578-017-0190-2&rft_dat=%3Cgale_doaj_%3EA546070073%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c660t-6d62d87bf87a256a3ab33e4085e58fec6fde47980b3d741e7b6740cdcd51d2d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1972561431&rft_id=info:pmid/29158891&rft_galeid=A546070073&rfr_iscdi=true |