Loading…
A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field
The novel design of a terahertz large aperture photoconductive antenna (LAPCA) is reported. It features a longitudinal orientation of the bias electric field within the photoconductive substrate, and has the advantage of a small interelectrode gap, resulting in a higher field for the same applied vo...
Saved in:
Published in: | Photonics 2023-10, Vol.10 (10), p.1169 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-12f6c1499debae4e47781ab195b7f7141308d2fbb32611e6fa7f6c58ffcc247a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-12f6c1499debae4e47781ab195b7f7141308d2fbb32611e6fa7f6c58ffcc247a3 |
container_end_page | |
container_issue | 10 |
container_start_page | 1169 |
container_title | Photonics |
container_volume | 10 |
creator | Kononenko, Vitali V. Bukin, Vladimir V. Komlenok, Maxim S. Zavedeev, Evgeny V. Kononenko, Taras V. Dezhkina, Margarita A. Ratnikov, Pavel P. Dolmatov, Timophey V. Chizhov, Pavel A. Ushakov, Alexander A. Konov, Vitaly I. Garnov, Sergey V. |
description | The novel design of a terahertz large aperture photoconductive antenna (LAPCA) is reported. It features a longitudinal orientation of the bias electric field within the photoconductive substrate, and has the advantage of a small interelectrode gap, resulting in a higher field for the same applied voltage. The proposed LAPCA configuration has been tested with a nitrogen-doped (∼10 ppm) synthetic monocrystalline diamond, which is a promising material for high-intensity and high-power terahertz sources. Two antennas with different high-voltage electrode realizations were assembled, pumped by a 400 nm femtosecond laser, and tested for THz emitter function. The experimental data are found to be in good correlation with the numerical simulation results. The performance of antennas with the conventional transverse E-field configuration and the novel longitudinal configuration is compared and discussed. |
doi_str_mv | 10.3390/photonics10101169 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aaf9806b921c4280a0b8637699bcb6ff</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772199049</galeid><doaj_id>oai_doaj_org_article_aaf9806b921c4280a0b8637699bcb6ff</doaj_id><sourcerecordid>A772199049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-12f6c1499debae4e47781ab195b7f7141308d2fbb32611e6fa7f6c58ffcc247a3</originalsourceid><addsrcrecordid>eNplkctuWyEQho-qVGqU5AG6Q-raCQOYy9JNkzaSpXaRLrpCAwccLPvgAidS-vQldRVFCrNgGP7_4zLD8BHoJeeGXh0ecstT8hVoD5Dm3XDKOBULqTg7eZV_GC5q3dI-DHC9FKfDrxX5knCfp5Hch4IPobQ_ZI1lE8jq0BdzCeTHM953yexbeuwbUwvThORzwhpG4p4IknWeNqnNY5pwR25T2I3nw_uIuxou_s9nw8_bm_vrb4v1969316v1wgsGbQEsSg_CmDE4DCIIpTSgA7N0KioQwKkeWXSOMwkQZETVDUsdo_dMKORnw92RO2bc2kNJeyxPNmOy_wq5bCyWlvwuWMRoNJXOMOiHa4rUacmVNMZ5J2PsrE9H1qHk33OozW7zXPqTqmVaM0lBcNVVl0fVBjs0TTG3gr7HGPap_1OIqddXSjEwhgrTDXA0-JJrLSG-XBOofe6gfdNB_hcXFZAD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882601437</pqid></control><display><type>article</type><title>A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Kononenko, Vitali V. ; Bukin, Vladimir V. ; Komlenok, Maxim S. ; Zavedeev, Evgeny V. ; Kononenko, Taras V. ; Dezhkina, Margarita A. ; Ratnikov, Pavel P. ; Dolmatov, Timophey V. ; Chizhov, Pavel A. ; Ushakov, Alexander A. ; Konov, Vitaly I. ; Garnov, Sergey V.</creator><creatorcontrib>Kononenko, Vitali V. ; Bukin, Vladimir V. ; Komlenok, Maxim S. ; Zavedeev, Evgeny V. ; Kononenko, Taras V. ; Dezhkina, Margarita A. ; Ratnikov, Pavel P. ; Dolmatov, Timophey V. ; Chizhov, Pavel A. ; Ushakov, Alexander A. ; Konov, Vitaly I. ; Garnov, Sergey V.</creatorcontrib><description>The novel design of a terahertz large aperture photoconductive antenna (LAPCA) is reported. It features a longitudinal orientation of the bias electric field within the photoconductive substrate, and has the advantage of a small interelectrode gap, resulting in a higher field for the same applied voltage. The proposed LAPCA configuration has been tested with a nitrogen-doped (∼10 ppm) synthetic monocrystalline diamond, which is a promising material for high-intensity and high-power terahertz sources. Two antennas with different high-voltage electrode realizations were assembled, pumped by a 400 nm femtosecond laser, and tested for THz emitter function. The experimental data are found to be in good correlation with the numerical simulation results. The performance of antennas with the conventional transverse E-field configuration and the novel longitudinal configuration is compared and discussed.</description><identifier>ISSN: 2304-6732</identifier><identifier>EISSN: 2304-6732</identifier><identifier>DOI: 10.3390/photonics10101169</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antennas ; Antennas (Electronics) ; Apertures ; Chemical vapor deposition ; Configurations ; Copper ; diamond ; Diamonds ; Electric fields ; Electrodes ; Emitters ; femtosecond pumping ; Graphite ; large aperture photoconductive antenna ; laser plasma and photocurrent ; Lasers ; Mathematical models ; Numerical analysis ; Photonics ; pulse THz radiation ; Radiation ; Semiconductors ; Simulation methods ; Substrates ; Voltage</subject><ispartof>Photonics, 2023-10, Vol.10 (10), p.1169</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-12f6c1499debae4e47781ab195b7f7141308d2fbb32611e6fa7f6c58ffcc247a3</citedby><cites>FETCH-LOGICAL-c421t-12f6c1499debae4e47781ab195b7f7141308d2fbb32611e6fa7f6c58ffcc247a3</cites><orcidid>0000-0001-7773-9303 ; 0000-0002-7951-0139 ; 0000-0002-3724-8005 ; 0000-0002-2722-9716 ; 0000-0003-3847-6808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882601437/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882601437?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kononenko, Vitali V.</creatorcontrib><creatorcontrib>Bukin, Vladimir V.</creatorcontrib><creatorcontrib>Komlenok, Maxim S.</creatorcontrib><creatorcontrib>Zavedeev, Evgeny V.</creatorcontrib><creatorcontrib>Kononenko, Taras V.</creatorcontrib><creatorcontrib>Dezhkina, Margarita A.</creatorcontrib><creatorcontrib>Ratnikov, Pavel P.</creatorcontrib><creatorcontrib>Dolmatov, Timophey V.</creatorcontrib><creatorcontrib>Chizhov, Pavel A.</creatorcontrib><creatorcontrib>Ushakov, Alexander A.</creatorcontrib><creatorcontrib>Konov, Vitaly I.</creatorcontrib><creatorcontrib>Garnov, Sergey V.</creatorcontrib><title>A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field</title><title>Photonics</title><description>The novel design of a terahertz large aperture photoconductive antenna (LAPCA) is reported. It features a longitudinal orientation of the bias electric field within the photoconductive substrate, and has the advantage of a small interelectrode gap, resulting in a higher field for the same applied voltage. The proposed LAPCA configuration has been tested with a nitrogen-doped (∼10 ppm) synthetic monocrystalline diamond, which is a promising material for high-intensity and high-power terahertz sources. Two antennas with different high-voltage electrode realizations were assembled, pumped by a 400 nm femtosecond laser, and tested for THz emitter function. The experimental data are found to be in good correlation with the numerical simulation results. The performance of antennas with the conventional transverse E-field configuration and the novel longitudinal configuration is compared and discussed.</description><subject>Antennas</subject><subject>Antennas (Electronics)</subject><subject>Apertures</subject><subject>Chemical vapor deposition</subject><subject>Configurations</subject><subject>Copper</subject><subject>diamond</subject><subject>Diamonds</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Emitters</subject><subject>femtosecond pumping</subject><subject>Graphite</subject><subject>large aperture photoconductive antenna</subject><subject>laser plasma and photocurrent</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Photonics</subject><subject>pulse THz radiation</subject><subject>Radiation</subject><subject>Semiconductors</subject><subject>Simulation methods</subject><subject>Substrates</subject><subject>Voltage</subject><issn>2304-6732</issn><issn>2304-6732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkctuWyEQho-qVGqU5AG6Q-raCQOYy9JNkzaSpXaRLrpCAwccLPvgAidS-vQldRVFCrNgGP7_4zLD8BHoJeeGXh0ecstT8hVoD5Dm3XDKOBULqTg7eZV_GC5q3dI-DHC9FKfDrxX5knCfp5Hch4IPobQ_ZI1lE8jq0BdzCeTHM953yexbeuwbUwvThORzwhpG4p4IknWeNqnNY5pwR25T2I3nw_uIuxou_s9nw8_bm_vrb4v1969316v1wgsGbQEsSg_CmDE4DCIIpTSgA7N0KioQwKkeWXSOMwkQZETVDUsdo_dMKORnw92RO2bc2kNJeyxPNmOy_wq5bCyWlvwuWMRoNJXOMOiHa4rUacmVNMZ5J2PsrE9H1qHk33OozW7zXPqTqmVaM0lBcNVVl0fVBjs0TTG3gr7HGPap_1OIqddXSjEwhgrTDXA0-JJrLSG-XBOofe6gfdNB_hcXFZAD</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kononenko, Vitali V.</creator><creator>Bukin, Vladimir V.</creator><creator>Komlenok, Maxim S.</creator><creator>Zavedeev, Evgeny V.</creator><creator>Kononenko, Taras V.</creator><creator>Dezhkina, Margarita A.</creator><creator>Ratnikov, Pavel P.</creator><creator>Dolmatov, Timophey V.</creator><creator>Chizhov, Pavel A.</creator><creator>Ushakov, Alexander A.</creator><creator>Konov, Vitaly I.</creator><creator>Garnov, Sergey V.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7773-9303</orcidid><orcidid>https://orcid.org/0000-0002-7951-0139</orcidid><orcidid>https://orcid.org/0000-0002-3724-8005</orcidid><orcidid>https://orcid.org/0000-0002-2722-9716</orcidid><orcidid>https://orcid.org/0000-0003-3847-6808</orcidid></search><sort><creationdate>20231001</creationdate><title>A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field</title><author>Kononenko, Vitali V. ; Bukin, Vladimir V. ; Komlenok, Maxim S. ; Zavedeev, Evgeny V. ; Kononenko, Taras V. ; Dezhkina, Margarita A. ; Ratnikov, Pavel P. ; Dolmatov, Timophey V. ; Chizhov, Pavel A. ; Ushakov, Alexander A. ; Konov, Vitaly I. ; Garnov, Sergey V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-12f6c1499debae4e47781ab195b7f7141308d2fbb32611e6fa7f6c58ffcc247a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antennas</topic><topic>Antennas (Electronics)</topic><topic>Apertures</topic><topic>Chemical vapor deposition</topic><topic>Configurations</topic><topic>Copper</topic><topic>diamond</topic><topic>Diamonds</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Emitters</topic><topic>femtosecond pumping</topic><topic>Graphite</topic><topic>large aperture photoconductive antenna</topic><topic>laser plasma and photocurrent</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Photonics</topic><topic>pulse THz radiation</topic><topic>Radiation</topic><topic>Semiconductors</topic><topic>Simulation methods</topic><topic>Substrates</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kononenko, Vitali V.</creatorcontrib><creatorcontrib>Bukin, Vladimir V.</creatorcontrib><creatorcontrib>Komlenok, Maxim S.</creatorcontrib><creatorcontrib>Zavedeev, Evgeny V.</creatorcontrib><creatorcontrib>Kononenko, Taras V.</creatorcontrib><creatorcontrib>Dezhkina, Margarita A.</creatorcontrib><creatorcontrib>Ratnikov, Pavel P.</creatorcontrib><creatorcontrib>Dolmatov, Timophey V.</creatorcontrib><creatorcontrib>Chizhov, Pavel A.</creatorcontrib><creatorcontrib>Ushakov, Alexander A.</creatorcontrib><creatorcontrib>Konov, Vitaly I.</creatorcontrib><creatorcontrib>Garnov, Sergey V.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kononenko, Vitali V.</au><au>Bukin, Vladimir V.</au><au>Komlenok, Maxim S.</au><au>Zavedeev, Evgeny V.</au><au>Kononenko, Taras V.</au><au>Dezhkina, Margarita A.</au><au>Ratnikov, Pavel P.</au><au>Dolmatov, Timophey V.</au><au>Chizhov, Pavel A.</au><au>Ushakov, Alexander A.</au><au>Konov, Vitaly I.</au><au>Garnov, Sergey V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field</atitle><jtitle>Photonics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>10</volume><issue>10</issue><spage>1169</spage><pages>1169-</pages><issn>2304-6732</issn><eissn>2304-6732</eissn><abstract>The novel design of a terahertz large aperture photoconductive antenna (LAPCA) is reported. It features a longitudinal orientation of the bias electric field within the photoconductive substrate, and has the advantage of a small interelectrode gap, resulting in a higher field for the same applied voltage. The proposed LAPCA configuration has been tested with a nitrogen-doped (∼10 ppm) synthetic monocrystalline diamond, which is a promising material for high-intensity and high-power terahertz sources. Two antennas with different high-voltage electrode realizations were assembled, pumped by a 400 nm femtosecond laser, and tested for THz emitter function. The experimental data are found to be in good correlation with the numerical simulation results. The performance of antennas with the conventional transverse E-field configuration and the novel longitudinal configuration is compared and discussed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/photonics10101169</doi><orcidid>https://orcid.org/0000-0001-7773-9303</orcidid><orcidid>https://orcid.org/0000-0002-7951-0139</orcidid><orcidid>https://orcid.org/0000-0002-3724-8005</orcidid><orcidid>https://orcid.org/0000-0002-2722-9716</orcidid><orcidid>https://orcid.org/0000-0003-3847-6808</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2304-6732 |
ispartof | Photonics, 2023-10, Vol.10 (10), p.1169 |
issn | 2304-6732 2304-6732 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_aaf9806b921c4280a0b8637699bcb6ff |
source | Publicly Available Content Database; EZB Electronic Journals Library |
subjects | Antennas Antennas (Electronics) Apertures Chemical vapor deposition Configurations Copper diamond Diamonds Electric fields Electrodes Emitters femtosecond pumping Graphite large aperture photoconductive antenna laser plasma and photocurrent Lasers Mathematical models Numerical analysis Photonics pulse THz radiation Radiation Semiconductors Simulation methods Substrates Voltage |
title | A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Diamond%20Terahertz%20Large%20Aperture%20Photoconductive%20Antenna%20Biased%20by%20a%20Longitudinal%20Field&rft.jtitle=Photonics&rft.au=Kononenko,%20Vitali%20V.&rft.date=2023-10-01&rft.volume=10&rft.issue=10&rft.spage=1169&rft.pages=1169-&rft.issn=2304-6732&rft.eissn=2304-6732&rft_id=info:doi/10.3390/photonics10101169&rft_dat=%3Cgale_doaj_%3EA772199049%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-12f6c1499debae4e47781ab195b7f7141308d2fbb32611e6fa7f6c58ffcc247a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882601437&rft_id=info:pmid/&rft_galeid=A772199049&rfr_iscdi=true |